目次/編集方針

トップメッセージ

グループ概要

ニコンのサステナビリティ

社会・労働

ガバナンス

企業市民活動

オープンイノベーションによる 投資支援

調達パートナー向け 品質管理システムアセスメント

お客様満足度

* 映像事業における米州、欧州および中国で のコールセンターの対応に対する満足度。

マテリアリティ1 コア技術による社会価値創造	028
ニコンの社会価値創造	029
マテリアリティ2 信頼に応える品質の維持·向上	035
ニコンのものづくり	036
品質と安全の確保	038

マテリアリティ1

コア技術による社会価値創造

企業は社会の公器と言われ、透明で公正な事業活動を通じて社会の持続可能な発展に寄与す る社会的責任を負っています。さらに近年、グローバルレベルの社会課題が顕在化する中で、企 業には社会システムやライフスタイルを変革するようなイノベーションを起こし、事業を通し て社会課題の解決に貢献することが期待されています。

ニコンは、2030年のありたい姿として「人と機械が共創する社会の中心企業」を掲げています。 事業そのものの強みを活かしながら、ニコンならではの革新的な価値やソリューションを提供し、 サステナブルな社会の実現に貢献します。

● 指標と目標

自己評価:○達成、△一部未達成、計画変更

指標	目標(達成年度)	2024年度計画 (アクションプラン)	2024年度実績	自己評価	2025年度計画 (アクションプラン)	
成長ドライバーの連結営業利益に占める比率			• 0%以下			
サービス·コンポーネントの連結営業利益に占 める比率	50%以上(2030年度)	※各事業部・本部の年度計画	• 59%	_	※各事業部・本部の年度計画	

ニコンの社会価値創造

基本的な考え方

ニコンは中期経営計画において、2030年のありたい姿を「人 と機械が共創する社会の中心企業 | としています。ニコンの 100年以上続く歴史の中で、露光装置に代表される超精密な ものづくりの力、デジタルカメラをグローバルに普及させ るブランド、さらにステークホルダーの信頼を培ってきま した。これらの強みを活かし、顧客の体験価値やイノベーショ ン創出に寄り添うソリューションを提供し、人と機械がよ りシームレスに共創していく世界で人間の可能性を拡げま す。そして、SDGsをはじめとした社会の課題、産業の課題に 対し、革新的な価値を提供し、豊かでサステナブルな社会の 実現に貢献していきます。

戦略

リスク

グローバルレベルの課題が顕在化し、多様化する社会に おいて、お客様の体験価値やイノベーション創出に寄与す るソリューションを提供できない場合、顧客の信頼を喪失し、 企業ブランド力の低下や業績低下となる可能性があります。

機会

社会システムやライフスタイルを改変するようなイノベー ションを起こし、事業を通して社会課題解決に貢献するこ とで、企業ブランド力の向上や、持続的成長につながります。

戦略

ニコングループでは、企業理念 [信頼と創造] のもと、 事業による新しい価値の「創造」により、持続可能な社会 に貢献することをめざしています。サステナビリティ方 針では、「ニコンならではの製品・サービスを生み出し、 事業活動を通して、環境・社会課題の解決やSDGs 達成に 貢献することを目指す| ことを掲げ、「創造| を通じて社 会に貢献する意志を示しています。

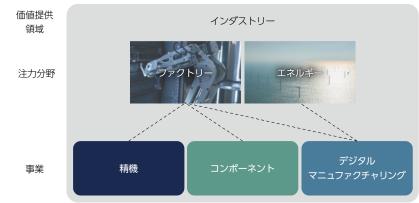
また、マテリアリティのひとつである「コア技術による社会 価値創造 を推進するため、中期経営計画ではサステナビリティ 戦略を経営基盤のひとつとしています。本計画では、2030年の ありたい姿を「人と機械が共創する社会の中心企業」と定め、 人間の可能性を拡げる[インダストリー]と、人生を豊かにす る「クオリティオブライフ(OOL)」、価値提供領域において、ファ クトリー、エネルギー、ヘルスケア、ライフ&エンターテインメ

● 「創造 | を通じた社会への貢献

2030年のありたい姿 人と機械が共創する社会の中心企業

サステナブルな社会

健全な環境 豊かな社会 心と体の健康 ニコンの貢献領域


ントの分野に注力しています。これらにより、人と機械がより シームレスに共創していく世界の中で、SDGsの達成、そして サステナブルな社会の実現に向け、特に安全・労働環境、脱炭 素、資源循環、健康、心の豊かさの領域で貢献していきます。

中期経営計画における貢献領域と事業

ニコンでは、中期経営計画において、コンポーネント事業、 デジタルマニュファクチャリング事業、精機事業によりイ ンダストリー領域の、映像事業、ヘルスケア事業によりQOL 領域の価値提供をめざします。その中で、完成品・サービス・ コンポーネントが一体となったソリューション提供を成長 ドライバーとして、5つの領域を中心としたサステナブルな 社会への貢献と、自社の成長をめざしていきます。

- ニコンの価値提供領域と事業

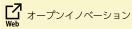
●事業を通じた貢献

ニコンの貢献領域	● 精機 ● コンポーネント ● デジタルマニュファクチャリング	●映像	●ヘルスケア
安全・労働環境 (省人化/自動化/カスタム化)	センシング・イメージング・ディスプレイ等を通じて、労働環境や交通インフラに貢献画像解析や光通信技術で、都市づくりや災害に強い社会基盤に寄与人工衛星モジュール提供等を通じて、宇宙産業・技術の発展に貢献		
脱炭素	 光を使った付加加工や微細加工で、社会のエネルギー効率を高める 高度な手や目を持つロボットやデバイス製造プロセスで、ものづくりを効率化 映像制作技術で、時間・空間/現実と仮想を超えて人がつながる社会に寄与 自社製品の光源長寿命化や耐久性向上で、健全な地球環境に貢献 	••	
資源循環	タービン補修等や超精密加工・制御・測定等で、お客様の廃棄負担軽減やリユースを促進装置再生/中古品販売強化で、循環型社会をめざすデジタル化によるリデュースを推進		
健康 (医療の高精度化/個別化医療)	◆疾病の早期・高精度評価で、医師や患者の負担を軽減し創薬を支援◆細胞受託生産ソリューションで、皆が使える再生医療を実現◆高精度なロボットモジュールで医療をサポート		
心の豊かさ (教育×デジタル)	・映像機器・3D/4D技術等で、豊かでクリエイティブな映像表現・文化に貢献・カメラや顕微鏡、望遠鏡で、宇宙や自然科学等への興味喚起、学習と次世代の担い手育成に寄与・時間・空間/現実と仮想を超えた教育・トレーニング		

主な取り組み

研究開発

ニコンでは、執行役員が委員長を務める「技術戦略委員会」 において、社会課題をマクロトレンドとして分析した上で、 事業環境分析、市場の検討・評価などを行い、注力すべき新 領域の開拓をしています。また、既存事業の技術戦略と研究 開発計画も策定しています。これらに基づき、各事業部に共 通する技術や将来技術の研究開発は、先進技術開発本部が 担っています。



オープンイノベーション

多様化する社会課題に対し、その解決につながる新しい 製品・サービス開発、事業立ち上げのスピードを加速するた めの手段のひとつとして、ニコンでは、外部リソースを積極 的に活用するオープンイノベーションを取り入れています。

具体的には、コーポレートベンチャーキャピタルの活動 の一例として、プライベート・ファンドを設立してベンチャー 企業に直接投資し、有望な技術やアイデアを持つベンチャー 企業を支援・育成する仕組みを設けています。 プライベー ト・ファンドは国内の2つ、Nikon-SBI Innovation Fund および Nikon-SBI Innovation Fund II に加え、2024年8月に米国に拠 点を置くNFocus Fundを設立しています。

2025年3月末現在、21社のベンチャーおよび12社のベン チャーキャピタルに投資支援をしています。

知的財産の創出・活用

ニコンは、持続的な事業成長を支える製品や技術の競争 力を適切に保護するために、必要十分な知的財産ポートフォ リオを構築し、それを有効活用しています。同時に、他者の 知的財産権を尊重しつつ、自社の知的財産権が侵害された 場合には毅然とした態度で権利を活用しています。

経営計画を達成するためには、各事業の事業戦略を知的 財産の側面から支えることが重要です。そのため、ニコンで は、事業部門、研究開発部門、知的財産部門が密接に連携し、 各事業に最適化した知的財産戦略を策定・実行しています。 この戦略では、特許、意匠、商標を組み合わせた「知財ミック ス」も活用し、製品やサービスを包括的に保護しています。 このような活動を通じて、中長期的な視点で事業成長に欠 かせない知的財産の創出とリスクマネジメントを推進して います。

知的財産活動

事業を通じた価値提供事例-1

ニコンの貢献領域 健康

不妊治療を支える製品で 少子化問題解決に貢献

日本や欧米などでは少子化が深刻な社会課題となり、 不妊治療の需要が増加しています*。この社会課題に対 峙しているのが、医師の指導のもと、体外受精や顕微授 精、胚培養など生殖補助医療を支える「胚培養士」です。 不奸治療件数の増加に伴い、胚培養士の負担も増してお り、作業の効率性と正確性がより一層求められています。 このような社会的な背景からニコンの子会社である 株式会社ニコンソリューションズは、顕微授精に特化 した [ECLIPSE Ti2-I] を2024年7月に発売しました。

※日本では、不妊治療による出生は全体の8.6%(「ARTデータブック」(日本産科婦人 科学会)、「合計特殊出生率について」(厚生労働省)をもとに、2021年の出生数から 算出)。欧州では、不妊治療は2011年と2019年の比較で約1.8倍に増加(「ART in Europe, 2019: results generated from European registries by ESHREJ (Human Reproduction, 2023, 38(12), 2321-2338) をもとに算出)。米国では、不妊治療は 2012年と2021年の比較で約2.3倍に増加。(「CDC 2021 Assisted Reproductive Technology (ART) Fertility Clinic and National Summary Report」をもとに算出)。

ICSI / IMSI 用電動倒立顕微鏡 [ECLIPSE Ti2-I] (株式会社ナリシゲライフメッドのマニピュレーター装着時)

顕微授精の効率化と正確性に貢献

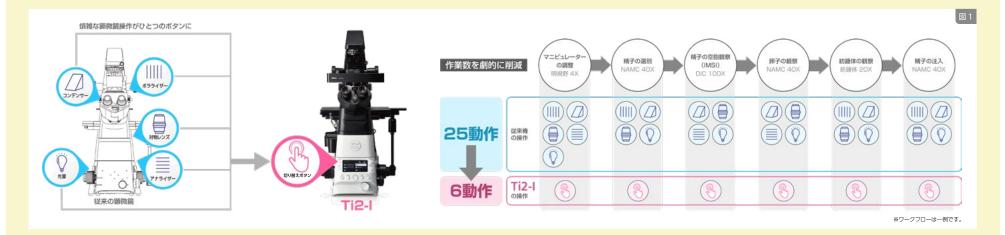
不奸治療のひとつの手法として顕微授精があります。 顕微授精は採卵した卵子に、顕微鏡下で直接精子を注 入する治療法のことです。微細な操作が必要なため、顕 微鏡で観察しながら、短時間で作業する必要があり、高 い技術を持つ胚培養士がその役割を担っています。

顕微授精の複雑なプロセスを効率化するために開発 された顕微鏡が、ECLIPSE Ti2-I です。プロセスごとに必 要な顕微鏡の設定変更や観察モードの切り替えを、顕 微鏡をのぞいたまま手元のボタンによりワンタッチで 行うことができます。そのため、従来機種と比べて操作 工数を約75%削減(ニコン調べ)し、ワークフローの大 幅な効率化を実現します(図1)。

また、顕微鏡前面に配置したディスプレイには直感

的に操作できるアイコンを採用するほか、アラート機能 を搭載することで操作ミスの予防を図っています(図2)。

さらに、ニコン独自の光学技術によって、卵子や精子 を明るく鮮明に観察できます。特に、視認が難しい卵子 の紡錘体を全方位でカラー表示できる機能は、胚培養 士が精子を注入する際に針を刺す角度を正確に見極め るサポートとなり、不好治療の作業精度向上と胚培養 士の負担軽減に貢献します(図3)。


胚培養士の負担軽減

顕微授精を担当する胚培養士は、命のもとである卵 子や精子を扱うというプレッシャー、常にミスなく最 善の作業を短時間で実施しなければならないというプ レッシャーなどにさらされています。また不奸に悩む

患者に最良の結果を提供したいという使命感も重なり、 その精神的な負担は非常に大きいという声が多くあり ます。

さらに、顕微授精は限られたスペース内で複数の作 業者が交代で行うルーチン作業であり、効率的な作業

社会・労働

>コア技術による社会価値創造 >信頼に応える品質の維持・向上

環境が欠かせません。特に、手動での頻繁な顕微鏡操作 が必要で、これが胚培養十の負担を増大させる一因と なっていました。

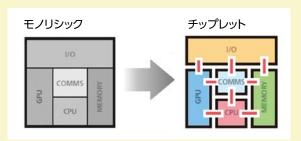
ECLIPSE Ti2-Iの導入により、これらの課題が大きく改 善され、胚培養士の負担軽減と作業効率の向上が期待 されています。ニコンは、このような顕微鏡を扱う方々 のサポートを通じて、不好治療の分野で貢献できるこ とを探求していきます。

女性の社会進出や多様なライフスタイルに貢献

不奸治療の進歩は、女性の社会進出や多様なライフ スタイルの実現に大きく寄与しています。妊娠を望む ためにキャリア形成をあきらめざるを得なかった女性 が、体外受精や顕微授精が選択肢に加わることでライ フステージに応じた出産計画を立てやすくなります。 加齢や医学的要因で自然妊娠が難しい人でも妊娠の可 能性が高まります。晩婚化や初婚年齢の上昇、シングル マザーの増加など家族の形が多様化する状況において も、誰もが親になり、子どもを持つという可能性を拡げ ることができます。

このように不妊治療の進歩は、多様な価値観を尊重 する社会の実現を後押しします。ニコンはこれからも、 人々の健康でよりクリエイティブな働き方や多様な暮 らしを支えていきます。

事業を通じた価値提供事例-2


ニコンの貢献領域 脱炭素

次世代半導体製造とサステナブルな 未来に貢献するデジタル露光装置

微細化の限界を克服するチップレット

半導体業界では、モノリシックににおける回路パター ンの微細化が限界に近づきつつあり、新たな製造技術 としてチップレットが注目されています。従来のモノ リシックにでは、回路パターンの微細化が進むほどに 製造コストが増加し、歩留まりの低下や設計の複雑化 といった課題が顕著になっています。特に最先端プロ セスでは、これらの問題が深刻化しており、性能向上と コストの両立が難しくなっています。

こうした背景から、複数のチップを組み合わせてひ とつのプロセッサを構成するチップレットが近年、注 日されています。チップレットでは必要なチップだけ を最新プロセスで製造し、それ以外は従来のプロセス

モノリシックとチップレットの比較イメージ

を使用できるため、製造コストの削減、歩留まりの向上 が可能です。今後、チップレットはデータセンターやAI など幅広い分野に貢献すると期待されており、次世代 の半導体の主流となる可能性があります。

チップレットの製造と露光装置

AIやクラウドサービス、ビッグデータ解析の需要が 急増する中、データセンター向け半導体には、これまで 以上に高性能と高効率が求められています。そしてデー タセンターでの大規模な処理を支えるためには、より 多くのチップを搭載できる大型のチップレットが不可 欠です。

チップレットの製造工程では、チップ同士を正確に 接続するための微細な配線を形成する必要があり、こ れに用いられるのが配線用露光装置です。この装置は フォトマスクに刻まれているパターンを感光性材料が 塗布された基板に投影し、配線パターンを形成します。 大型のチップレットでは、複数のチップレット間で高 速かつ低消費電力の通信を実現するため、接続配線の 密度や正確さが特に重要とされています。

微細化と生産性の両立

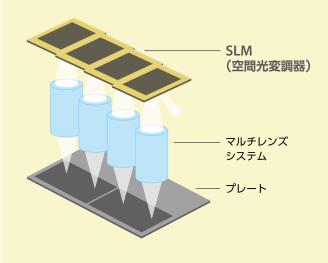
高性能化と大型化が進むチップレットの製造で、配 線用露光装置には微細化と露光面積の拡大が求められ ています。ニコンは長年培ってきた半導体露光装置の 高解像技術によって微細化を可能にし、最先端の配線

形成に対応します。

一方で、チップレットの大型化に伴い基板サイズも 拡大し、露光装置には広い面積を短時間で露光する高 い牛産性が求められますが、FPD露光装置の「マルチレ ンズテクノロジー」を投入することで克服できます。こ の技術は、複数のレンズを並べて広い露光エリアを効 率良くスキャンすることができ、今後の基板の大型化 にも対応可能です。

このように、微細化と生産性を両立するニコンのデ ジタル露光装置は、次世代半導体製造において不可欠 な技術基盤を提供します。

デジタル露光装置のイメージ


フォトマスク不要のデジタル露光装置

ニコンのデジタル露光装置は、フォトマスクをSLM(空 間光変調器)に置き換えることで開発リードタイムの短 縮や露光精度の向上だけでなく、環境やサステナビリ

ティにも大きく寄与するメリットがあります。

従来のフォトマスクは、製造や輸送の過程で化学薬 品やエネルギーを消費し、最終的には廃棄物になりま す。また、配線の変更があるたびに新しいマスクを作成 する必要があり、エネルギー消費や廃棄物の発生は避 けられません。

一方、SLMを採用することで、物理的なフォトマスク が不要になり、これらの環境負荷を大幅に削減できま す。さらに、SLMは電子制御によってさまざまなパター ンを生成できるため、配線パターンの変更に即時に対 応でき、試作や開発が効率化されリソースの無駄を減 らすことができます。

SLM(空間光変調器)を用いたデジタル露光技術

持続可能性とさまざまな分野の発展に貢献

ニコンのデジタル露光装置は、チップレットの製造 に大きく貢献することで、半導体のさらなる発展を支 える基盤となり、医療、教育、交通、エネルギーなど幅広 い分野で効率化や利便性をもたらし、人々の生活の豊 かさや快適さにつながります。

また、資源消費や環境負荷を削減し、半導体製造工程 全体のカーボンフットプリントを削減する未来志向の 技術ともいえます。デジタル露光装置は、環境保護と技 術革新を両立させ持続可能性を実現する技術であり、 未来の社会を支える重要な役割を担っていきます。

ニコンはこのデジタル露光装置を、2026年度中に発 売する予定です。