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Introduction to Automated Repair Solution Enabled by
Lasermeister LM300A + SB100

Koichi YASUBA

ZOVIF2019FE(CEEID U 9 — Lasermeister 100A ZF5E L, 20244 (C (& LM300A & SB100ZFFEL, NS
EEZAVCEEHEY U 21— 3 VERERELURE. LIM300A [FAHA U —F—EEER—OILAICKY, 99—V T—
RIFEDKEVESRBIEICHINT D. SB100[FAEID A+ v F—(C KD EaE R IRETRI P HEESMI OBEHE, S5I(C
LM300A DI/ VR EEBERZ1TS. miEatty NCERT2IET, sHllh oREESEFE C—EDEHRE Ot
AESEEDN DLELTRVIBUERITTE RN KERERH THD. I—E VT U—RREETRRERDEHEV ST
BIRREREBICHDEMLU, £0.25 mm UAOESREREZRIZEUE. RETEFILHA G EDIRYEHRIT—9 DH THlE
ERZEHTE, BLEVWRE-Z—X(CIHAD. SBEEWNREERHECDRBEL, BE-—X(IGHUEEEEY
Ua—3avDihicz81E7.

Nikon launched the metal three-dimensional (3D) printer Lasermeister 100A in 2019 and introduced
LMB00A and SB100 in 2024, based on which an automated repair solution was proposed. LM300A is
equipped with a high-power laser and features a large build volume, thus enabling the repair of large
components such as turbine blades. SB100 features a built-in 3D scanner for the precise measurement
and automatic extraction of damaged areas, as well as for the automatic generation of tool paths for use
with LM300A. This solution is advantageous as it uses both devices simultaneously, thus enabling a highly
accurate and stable automated repair process from measurement to additive manufacturing. In repairing
turbine blades, the system used can accommodate unpredict issues such as the deformation of actual
components and affords a repair accuracy of + 0.25 mm. Moreover, in cases where the original design
model is unavailable, the system can generate repair shapes solely from measurement data, thus
satisfying a wide range of practical requirements. In the future, Nikon plans to expand this solution to thin-
walled components such as molds, thereby enhancing automated repair solutions in response to diverse
customer requirements.

Key words &E&ESH. 3D 5HAl, KBHAE I—EYTL—NEE, SRmE

additive manufacturing, 3D measurement, defect-area identification, turbine-blade repair, mold repair
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EIEMBIERREMICH TS ICSI/IMSI &
HhER{AERER

ICSI/IMSI and Spindle Observation in Assisted
Reproductive Technology
Norio MIYAKE

STEMBIERERANT (ART: Assisted Reproductive Technology) D#&El&, ZN7ZEZA 2 EMEERAMTICDOVTEN
95, NEEDAY FIVICE ST ART FEBRBIRFE CH Y, BARTIF20226 4 BONESEAREEEDRIHELE,
ART [CKBFTERDEIGHIBINL TS,

ART [, IIFPIET, REEZHRVEIRZZET 2EERMTHY, BEMRZEERAT 2HNERE (VF) PINikeE
PHEFENE (BRMIRHE, 1ICS), INMBRENRAEAERETENE (IMS) REZSATVD. ZIVIFART DERT v
FICHT DIEIITEMER, ERERE, ENBMEZRELTHY, ART POEREZIELTVS. fIRIE, EIIIEHY
BIFBTOEEMEPEOHRICEL TS Y, EREREFINFCREOIANRERRZTEECT S, —75, FIIIHERE
(3 ICSI/IMSI DRRICHEF P IRF Dl ERERZ1TL), Nikon Advanced Modulation Contrast (NAMC) 5%
BEICKW DY NS A DZEELEIES. &, HEARECEARLEZFRL, MTFAOHEBEFOREZIEET &
TREXZEHTNS.

INOSDORXZHEINE, ART FOTADOMELEBED LICEMU TS Y, EEREG OB EBEMRDE EIC
DRAHSTVS. ZIVEINSORIMBEFRZBLU T, HAlREZHRT DO BATND.

This article introduces the role of assisted reproductive technology (ART) and the microscopic
techniques supporting it. ART is an important option for couples facing infertility. In Japan, since the
implementation of insurance coverage for infertility treatments in April 2022, the proportion of newborns
conceived through ART has been increasing. ART encompasses medical techniques that assist
pregnancy by handling eggs, sperm, and embryos, including in-vitro fertilization (IVF), intracytoplasmic
sperm injection (ICSl), and intracytoplasmic morphologically selected sperm injection (IMSI), which rely
on microscopes for precision.

Nikon provides specialized microscopes, including upright, stereo, and inverted microscopes, tailored
for each step of the ART process. Upright microscopes are ideal for analyzing sperm motility and
morphology, whereas stereo microscopes enable three-dimensional observation of eggs and embryos.
Inverted microscopes facilitate detailed observation during ICSI and IMSI procedures and use
technologies such as Nikon advanced modulation contrast and differential interference contrast to
enhance image clarity. Furthermore, spindle observation using circular polarization helps to identify
spindle positioning within the eggs, which improves the success rates of fertilization.

These optical technologies increase the efficiency and accuracy of ART processes, reduce the burden
on medical professionals, and improve the treatment outcomes. Nikon contributes to addressing the
societal challenges through these innovations.

Key words AJEMBIEERSA, F15245, WRMIRNE, IMSI, $hiR4ERss
assisted reproductive technology, in-vitro fertilization, intracytoplasmic sperm injection, intracytoplasmic morphologically
selected sperm injection, spindle observation
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Image courtesy of Ronny Janssens, Centre for Reproductive

Medicine, Brussels Free University, Belgium
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NIKKOR Z 28-135mm f/4 PZDEF

RMBAME, JRAMIE, AR

Development of the ‘NIKKOR Z 28-135mm /4 PZ’

Koji NAGAOKA, Tomonori KURIBAYASHI and Nobuaki TAKAHASHI

20254 B, [NIKKOR Z 28-135mm f/4 PZ] ZFFtUfc. Z YV DAZMREZMA L D DENE/ VT # — < > A TH
LU Y XTHY, BRLBMEHIEDD VXY - ARU—2 a VREICBWTETF 75 7 7 —DIRERREEZE
KUTWS. ZORMMEDIZO CEEDAEERRTOERKMZ, T IICFHIAT 2.

The NIKKOR Z 28-135mm f/4 PZ was launched in April 2025. This lens inherits the optical performance
of Nikon and is also specialized for video performance. It offers comfortable operability for videographers
in one-man shootings for various video productions. In this paper, the latest elemental technologies
packed into this lens are explained to elucidate its value.

Key words —J>zZ<orh, LY, IND—X—L4, SHERE
Nikon Z mount, interchangeable lens, power zoom, video shooting
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L~ X [NIKKOR Z 28-135mm f/4 PZ| #%5¢ 7> (Fig. 1). FORR [Tr~y - FRL—Y g v (7 F 4

) KBV THELP R A -2 L Y AUEEH6Nn 5 T
R, MOBARIEIETTE LT =X =4 ], [
‘ LY AT 7+a—LENRTWRWA XY bitdk - T -
NIKKOR ; ‘ FUfE RSB 2 e ¥ A 7 2 OfE4E ], [8KASEE & 70 %
: & B U720t eikat ] 2 @B 2 et LEBIL 7.

3 ©FHI5T77—mYK— T HRFMEHEE

3.0 [ivReg v FE R & 8RR
T U F REGEOBBHEE SN AN, gAY v 7
DY 21, WURHIERIR S EB STV S, F72,
—RIEYDORNF 22X 07 —gRe T4 VTR L
IZBWTH I AR, HEOGTAL TOWRETE HLEN
s ks 1o o o Hb. HaA Ny FREICHIET 5701018, Ky~
2 BEREMEED-Z-LLY XHROHSR M TR VA R EHT U S Vs, T LYK
=3 viE, BWEICEE L2 HBmL Y A INETH ZRHLV YA X IEFICERG YR E L DV &
AL CTEAD, AR ZHEHL > XL LTLAL bR
Twam? eEbhbe, HZIENoThHb. ZOBIKEE
OF, BlHEICBIFAIN-> TWhTFE 2 —F—=—X &
ZRAEL, AEHoRMm a7 e [EHEMEmEE L
T, ARV MEEE - O - BUER oIl 20 LT
THLIENTELNT—=ZA=LL VX LT © Christopher M. Nig B
ZFOLT, FFRERDONIKKORZ L ¥ RiFHiFE T v & Fig. 2 {EULXP T VSRR, 28-135 mm

Fig. 1 NIKKOR Z 28-135mm /4 PZ
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ADAS/AD [CEIFTcE=FHRES X S
AT L [Tele & Wide [E—E1H XS]
DEIFE

SR, BRFE, AW, HERUDZ, EIKSE, Mk

Innovative In-vehicle Camera System for ADAS/AD:
Single-Lens System Integrating Telephoto and
Wide-Angle Functions

Hiroshi KANAOKA, Takamichi KURASHIGE, Yusuke TAKANASHI,
Akihiko MEGURO, Daisuke TSUKIYAMA and Mizuki WAYU

BEEERICHIDTEELRIEY AT APEREGRMIFHSELLTVS. Ffe, RSAN-DIREPSHITES
ERBCEBVC ETHET DEABHERLET DI, FREZEA LI EDIFEANDZ—XD'BFH>TVD.

TOAVE=ZEDNTD MV T - NABRERE, FRDSS v IPNRITHIRHEZRILT S EZBi50, 2020
FNOHAPEB ZITHO> T, TOMRELT, BrUYRELALVY X ZE—KEL, EALEDZEERT 5 ENT
BECIRDEMNIGNX SV RT L2 LTz,

CDEFBAASELERL Y XELAL Y AD—HEZERRL, &5 EEDZBRICERX T2 I ENTRETHS.
&7 EEIDKEHE—DHITRENE UidW\N T EH SEMEVIDBRZEERRHM T DRIC, &5 TR UIR#E v
bz S wF YT ULTH, WNRERK LW ZEICRBLCW IDHBEERS T ENTED. Ffe, HRNICET
(CECE T B CEICRWAXSEREINZ BN S2E00 ZRINR<RDTENTE, {EROFECH 2LV AT A
IR M OWERREDERDEIFCED.

In the automotive industry, advanced driver-assistance systems (ADAS) and autonomous driving
technology (AD) are evolving every day. Moreover, a growing demand exists for methods that enhance
visibility to prevent serious driver-accidents related to unnoticed signs/pedestrians. Nikon and Mitsubishi
Fuso have developed an innovative in-vehicle camera system to create new safety value for future trucks
and buses.

The initiative resulted in the development of an innovative camera featuring a single-lens system
integrating telephoto and wide-angle functions to facilitate both long-distance and peripheral visibility.

The optical axes of the far-away and periphery shots are the same, which prevents parallax. Therefore,
the camera system reduces the risk of losing track of an object or detecting a double image when used
as an in-vehicle camera with Al image recognition to collect road information with tracking signs or other
vehicles in the distance.

Using this system requires fewer cameras to be installed in the vehicle owing to its effective positioning
and integrated telephoto and wide-angle lens system. This innovation facilitates uninterrupted 360-degree
coverage and addresses common challenges such as high system costs and failure rates.

Key words s#HhH X5, ESGSEY AT L, B8k, BE LA, B—XE
in-vehicle camera, advanced driver-assistance systems, autonomous driving, telephoto, wide-angle, coaxial
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M HAELL T D, T2, FIA4 =D E VYREEML Y A —MEL, #hEEBEERST S
FEERMETEL W L TRETLZ2ERFREZRIET 5729, ENWEEE RDHEF R H AT EIWGH L2 AT L %
2N LS5 FENDZ—ADPHE > TWnb. L7 (Fig.1).
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Optical Design of Free Space Optical Communication
Devices for Satellite Communications
Hironobu SAKUTA, Kousuke MURAKAMI and Naoki SHIMA

ARY LTOYTYEEETIE, FHEMAUCEZBGBERDERBHEICED > TLS.
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TERNMMEICIRZN, SO, HE-i LEEEEICSIT2i LBOHERERERFIEE L.

WSS, EREABEOBMEEFRFEUICHERDEREHCDOVTHEEHT D.

The Customized Products Business Unit is involved in the development of optical systems for space-

based optical communications.

Flight products require a long time to be launched and operated after their development. In January
2025, large-volume images from the advanced radar satellite “Daichi-4” (ALOS-4) were successfully
downlinked via an optical-data relay satellite in geostationary orbit. These two satellites are equipped with
optical antennas (telescopes) designed and manufactured by our company.

Additionally, we are developing optical-communication equipment for the ground stations of quantum
cryptography communications through a collaborative effort. Optical communications require tracking at
the transmitting and receiving stations. Thus, we have designed and manufactured an optical system for
precise acquisition and tracking at the ground station for satellite-to-ground station communications.

This report provides an overview of free-space optical communications and the design of the optical

system developed.

Key words ZPREBGEE, K7 V77, 3R HERE. J7A/N\—iES

free-space optical communication, optical antenna, three mirrors, fine tracking, fiber coupling
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Development of a Multi-Turn Battery-Free Absolute
Encoder [MAR-M700MFA |

Masahiko GOTO, Kei ABE, Shimpei SENDAI, Takumi YAMAMOTO and Keisuke TOKIWA
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An absolute encoder is a type of sensor device commonly used in industrial robots in automobile
manufacturing lines, machine tools, and various other applications. It detects absolute values for robot-
arm rotational displacement and similar measurements. MAR-M700MFA, a multi-turn absolute encoder
released in November 2023, offers an increased guaranteed operational temperature range compared to
the previous multi-turn external battery-free absolute encoder of the company. This is because of the
utilization of all-solid-state battery which renders this model maintenance-free. Furthermore, this model is
equipped with new features including predictive maintenance and angular precision self-correction, which
enable an expanded range of possible usage environments for industrial robots, improved operational
consistency, and greater precision in motion control. This article explains the technical features of “MAR-
M700MFA”.
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BABFR, s, #ENE, Behrang Poorganji

Processing Windows of Ni625 Alloy Fabricated using

Direct Energy Deposition®

Yusufu EKUBARU, Takuya NAKABAYASHI, Tomoharu FUJIWARA and Behrang POORGAN]JI

AWWETIF, —OVE Lasermeister L—Y'—#RIEQINIE T R)LF—1RE (LP-DED) &EBZBU - Ni625EE0DEF
TPOBRD sV ROZEEIIURE. TOERAX Y E, MllEE SO DABREIRRZ NS T & (T & > THEIL
SNnfe, L—Y—1h, AFvUEE, BrOEPIRIVF—BEOBERERYT. 2TOY Y FILEFHFHBLOHERT
VRS A MUNBRD ZIBEOMEEEERL, TV RSA N —LABBIEEEREOEMCHEVES L. YV
VDS ERFEF D THIBEEZRL, ZOEFBEDRSESFAZFCHoIc. 5 EREEDIUMEREEF, ZNZFNI008 =
205 941 =9 MPa, 682 = 11H'5 640 = 7 MPa QEE T ofe. AR, OIS X —I 7w MMIHizd Ni625
BEOBNOEEMZRIIL, EMRBRUEEICH U TE—DEENHR O CAKMGIEFEES, KDY ICEFDSE
REBIEHICEHD [LIE] ZERATESZZEARULTWVS.

Herein, a process window is developed for Ni625 alloy fabricated using a Nikon Lasermeister laser
powder direct energy deposition (LP-DED) unit.

The process map illustrates the relationship between the laser power, scan speed, and effective energy
density, established by examining the correlation between the microstructure and mechanical properties.
All samples exhibit a bimodal microstructure comprising equiaxed and columnar dendrite grains, and the
dendrite arm spacing decreases with increasing scan speed. The tensile behavior of each sample
demonstrates minimal variation, and the values are comparable to those reported previously. The ultimate
tensile and yield strengths range from 1008 + 2 to 941 + 9 and 682 + 11 to 640 + 7 MPa, respectively. This
study highlights the remarkable manufacturability of Ni625 alloy for additive manufacturing across diverse
parameter sets, demonstrating that a single ideal process set does not exist for each material and

machine. Instead, multiple “recipes” may be employed to achieve similar outcomes.

Key words @&, U—H—MKEQUEIRIVF—HREE > IRIV625, Y- 3y, WMHlEE
additive manufacturing, laser powder direct energy deposition, Inconel 625, simulation, microstructure

7 Introduction

Metal additive manufacturing (AM) is an excellent tech-
nology for part fabrication, offering distinct advantages over
conventional manufacturing methods. With significant cost
and lead-time reductions and the capability to develop com-
plex geometrical features [1]-[3], metal AM has rapidly
garnered interest from key industries such as aerospace,

automotive, military, and biomedical sectors [3]-[5]. Metal

AM entails various techniques, including material jetting,
sheet lamination, laser powder bed fusion, binder jetting, and
direct energy deposition.

Laser powder direct energy deposition (LP-DED) presents
unique advantages over other AM processes, including alloy
design, repair capabilities, surface modifications, and the
synthesis of large-scale components with adequate dimen-
sional accuracy [6]. These capabilities have been increas-

ingly demonstrated and recognized in various fields, particu-
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larly in the aerospace industry [4]. The in-situ alloying of
elemental powders offers an effective alternative to the use
of pre-alloyed powders, which are cost- and time-intensive to
produce using traditional atomization methods. By mixing
pure elemental powders of Ni, Cr, Mo, Nb, and Fe, Wang et
al. [7] demonstrated the high-quality fabrication of Ni625
alloy components using LP-DED and in situ alloying. Wilson
et al. [8], [9] repaired defective voids in turbine blades, illus-
trating the effectiveness of LP-DED in repair. These studies
highlight the adaptability of DED to a wide range of defec-
tive parts, as well as its capabilities in repair and mainte-
nance. Balla ef al. [10] applied a tantalum coating onto tita-
nium using LP-DED, a notable achievement considering the
extremely high melting point (>3000°C) of Ta, which poses
challenges for traditional melt-cast methods. Ta-coated Ti
exhibits favorable interactions with bone cells, indicating
promising biocompatibility. Gradl et al. [1], [2], [11] utilized
LP-DED to manufacture a large-scale rocket nozzle for aero-
space applications. The growing recognition of LP-DED is
reflected in the significant increase in the number of patents
and scientific publications dedicated to this technology, high-
lighting its importance in academia and industry [5], [12].

Furthermore, the anticipation of an expanding market for
AM has spurred intense competition among AM machine
manufacturers, resulting in the development of various AM
systems [4]. In this context, Nikon Advanced Manufacturing
Business Unit in Japan developed an LP-DED system named
Lasermeister. Extensive empirical testing has been con-
ducted on this machine with common AM materials, includ-
ing Fe-, Ni-, and Ti-based alloys. Herein, we present our lat-
est research findings, particularly focusing on the Ni625
alloy, also referred to as Alloy 625 or Inconel 625.

The Ni625 alloy has been utilized in various industries,
including petrochemical, aerospace, chemical, marine, and
nuclear sectors, due to its excellent strength and high corro-
sion and fatigue resistance [12], [13]. Moreover, its remark-
able weldability has attracted considerable attention in AM,
where it has been successfully produced using various pro-
cess parameters in LP-DED, including laser power (P)
(220-1500 W) and scan speed (V) (8.3-33.3 mm/s), with
the corresponding effective energy density (Ep) ranging
from 14 to 66 J/mm? [7], [13]-[20].

The solidification microstructure of AM-produced Ni625
alloy is complex, featuring fine dendrites, micro-segregated
elements, and various solidification phases [21]. The nickel-
based superalloy, primarily strengthened by the solid hard-
ening effects of refractory elements including niobium and

molybdenum within a nickel-chromium matrix exhibits a
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face-centered cubic (FCC) structure [14]. These alloys are
sensitive to the precipitation of strengthening intermetallic
phases, including stable ordered FCC (L1.) y-Niz;Al; meta-
stable body-centered tetragonal y”-NisNb; stable orthorhom-
bic d-NisNb; carbides (MC, MC); and intergranular brittle
Laves phases ((Nb, Mo) (NiCrFe);) in the interdendritic
region [1], [12]-[14]. The formation of these phases, par-
ticularly the Laves phases, consumes significant amounts of
Nb and Mo, thereby reducing their content in the matrix,
which diminishes solid solution and precipitation strengthen-
ing effects [19]. Further, the Laves phase induces crack
nucleation and propagation, significantly deteriorating creep
rupture properties and ductility [19]. Consequently, manu-
facturing components with reduced elemental segregation
and fewer Laves phases has become critical.

The mechanical properties of materials are primarily influ-
enced by factors such as porosity, grain size, the behavior of
precipitates, and dendrite spacing [25]. Generally, the
mechanical properties can be improved by reducing their
size, which essentially means creating a finer microstruc-
ture. Reducing porosity can enhance the material’s strength
and durability as fewer pores mean less space for cracks to
initiate. Smaller grain sizes often lead to increased hardness
and strength due to the Hall-Petch relationship. Controlling
the behavior of precipitates, such as reducing their size, can
increase the material's strength as smaller precipitates more
effectively hinder dislocation movement [25], [26]. Lastly,
smaller dendrite spacing can contribute to a more homoge-
neous microstructure, reducing segregation and enhancing
various mechanical properties [25], [26]. One fundamental
approach to achieving a finer microstructure is to increase
the cooling rate, and it can be accomplished by using a
smaller P, a higher V, or a combination of both [27].

Based on this background, this study aimed to a) develop
the process windows for Ni625 alloy using the Lasermeister
system and b) establish a process window that expresses the
relationship between P, V, and Ep based on a series of simu-
lations and experiments focusing on microstructural proper-
ties and mechanical performance.

This research demonstrated for the first time that using
lower P values and smaller hatch spacings can significantly
enhance the strength of Ni625 alloys by promoting substan-
tial microstructure miniaturization. Additionally, DED pro-
cess “recipes” for Ni625 in the lower P region were devel-
oped. These results are expected to significantly contribute
to the DED fabrication of components such as precise, large,
thin-walled structures that are vulnerable to thermal defor-

mation, as well as the automation of gas turbine blade
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repairs, among other applications.

Table 1 Chemical composition (wt%) of Ni625 alloy

Powder Ni Cr Mo Nb+Ta Fe Al Ti C Mn

Inconel625 Bal. 20-23 8-10 3.15-4.15 < 5 <04 <04 <0.03 <0.01

D10: 63
0 D50:76
D90 : 120

2

Volume (%)
o

0 50 100 150 200 250 300
Powder diameter (um)

@ [

2.5 10.08

55

Building direction

As built part

Fig. 1 (a) Morphology and (b) powder size distribution of the Ni625
alloy powders used in LP-DED (c) Schematic of LP-DED
and (d) dimensions of the tensile test sample

7 Experimental Section

2.1. Ni625 Alloy Fabrication

Ni625 alloy powders were procured from Carpenter Addi-
tive Inc.; and their compositions and morphologies are sum-
marized in Table 1 and Fig. 1, respectively. An LP-DED unit
(Lasermeister 100A) with a 915 nm 200 W laser diode mod-
ule and a beam diameter (d) of 0.5 mm was utilized to fabri-
cate the Ni625 alloy samples (Fig. 1 (c)). Two samples,
namely, a 10 mm X 10 mm X 10 mm cube and a 10 mm X
10 mm X 55 mm rectangle, were fabricated along the x-, y-,
and z-axes on a SUS304 substrate via the XY scanning strat-
egy. Cubic samples were used for microstructural analysis,
whereas rectangular samples were employed for tensile
property testing (Fig. 1 (d)) [7], [20]. The parameter values
used for the experiment are listed in Table 3, where the

laser hatch spacing was maintained at 0.2 mm.

2.2. Microstructure Characterization and Mechanical
Properties

Samples were cut from the substrate via electrical dis-

charge machining to analyze their microstructures and

mechanical properties. The YZ cross sections were first
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mechanically polished using emery paper up to a 4000 grade
and subsequently chemically polished with colloidal silica to
achieve mirror-polished sections for microstructural exami-
nation.

Optical microscopy (VHX8000, KEYENCE, Osaka, Japan )
and scanning electron microscopy (SEM; SU1500, Hitachi
High-Tech Corporation, Tokyo, Japan) were conducted to
examine the microstructures. The bulk samples fabricated
by the LP-DED Lasermeister were characterized via X-ray
diffraction (XRD; RINT2500,Rigaku Corporation, Tokyo,
Japan) with Cu-Ka radiation at room temperature (RT).
Crystallographic texture and elemental segregation were
investigated using electron backscattered diffraction (EBSD)
and energy-dispersive X-ray spectroscopy (EDS), respec-
tively, with a scanning electron microscope (JSM-
7900F,JEOL Ltd., Tokyo, Japan). A tensile test (TGI-50KN,
MinebeaMitsumi Inc., Nagano, Japan) was conducted at RT,
where the loading axis was parallel to the build direction
(BD). The test was conducted thrice for each sample, and

the results were averaged.

2.3. Simulations

The formation mechanism of the microstructure induced
by LP-DED was explored through simulations focusing on
thermal behavior and solidification characteristics. The ther-
mal behavior calculations provided insights into the tem-
perature distribution and the shape and size of the melt pool
(MP). Conversely, analyzing the solidification characteristics
aided in understanding the development of grains, which
could manifest as either equiaxed dendrites (ED) or colum-
nar dendrites (CD).

These simulations were performed using the commercial
software FLOW-3D v12.0 for a region measuring 10 mm X
7 mm X 3 mm in the X, Y, and Z directions. The region was
discretized into a structural Eulerian mesh with a size of
0.025 mm.

2.3.1. Heat Source Model

@ :[ﬁi:bz]exp{—[%jz}—hc(ﬁn) M)

where P, is the laser power (100/120/160 W), 7 is the dis-
tance from the beam center, 7 is the laser radius (0.25 mm),
7, is the effective laser radius (0.1 mm), /4. is the heat trans-
fer coefficient (9.5 W/m? K) [28], T is the temperature, and
To is the ambient temperature (298 K).
2.3.2. Powder Model

We employed the Lagrangian particle tracking method to

model the powder particles. Particles entering the melt pool
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transformed into liquid cells upon surpassing the melting
point. The amount of powder injected was calculated from
the predetermined powder utilization efficiency. The powder
was injected at a constant velocity from the vertical direction
of the melt pool to ensure the melting of all particles.
2.3.3. MP Flow Governing Equations

The governing equations, which include mass, momen-
tum, and energy conservation, are expressed in (2), (3), and

(4), respectively.

g—’;+v~pv:R50R (2)
ov 1 H o Rsor
—+(V-V)o=—=Vp+=Vv+g- V-V 3)
PRt U L s L (vw)
a(aptl)+V~(plv):—pV-v+kV2T+ISOR @)
I=C,,T+(1—fs)L ®)

where p is density, ¢ is time, v is flow velocity, Rsor is the
amount of mass source due to powder particles, p is pres-
sure, m is viscosity, v, is particle velocity, Cv is specific heat,
J5 is the solidus rate, Isor is the discharge of energy, and L is
latent heat. The thermophysical parameters were calculated
using the thermodynamic database of JmatPro (Sente Soft-

ware) considering their temperature dependencies (Table 2).

where e is the cooling rate, 7% is the solidus line temperature
(1398 K), T\ is the liquidus line temperature (1613 K), £ is
the time below the solidus line temperature, # is the time
below the liquidus line temperature, and V is the differential

operator.

3 Results

3.1. Simulated Data

The aspect ratio (D/W), indicating the depth (D) to width
(W) ratio of the MP, was assessed in both the experimental
and simulated scenarios to verify the simulation model.
Figure 2 displays the results of the single-track experiments
and simulations at V values of 5 and 10 mm/s, with constant
P and powder feeding rate (Q) values of 120 W and 3 g/min,
respectively. The experimental dimensions of the MP were
measured from the optical images, whereas the simulated
sizes of the MP were determined by identifying a black soli-
dus line on the temperature contour map. The aspect ratios
decreased with increasing V, and the experimental aspect
ratios were slightly higher than the simulated ones, with dif-
ferences of < 10%. It is considered that one possible reason

for this difference is the thermal boundary conditions of the

0.6
2.34. Solidification Parameter ot M o Emﬂmmfc)
The temperature gradient G and solidification velocity R gu 1 Ds"““‘f‘fd
represent spatial temperature variations and are expressed §°3
as: go.z
T-T,
R © * —
G=VT @ Fig. 2 Comparison of the experimental and simulated MP: (a) and
(b) experimental optical images, (2’) and (b’) simulated
R= |é—| ®) temperature contours, and (c) aspect ratio
Scale bars: 200 mm
Table 2 Thermophysical properties of Ni625 calculated using JmatPro
Tiiifiztre C(;f‘ll(li?ll;?jilty Specific heat  Density Viscosity Surface tension Latent heat of fusion
T (XK) W/ mK) Cv(/kgK) rkeg/m’) m (kg/(ms)) s (N/m) L (kJ/kg)
298 10.8 406 8474 - -
600 15.9 456 8373 - -
900 20.9 504 8253 - -
1200 25.8 559 8117 - - 210
1500 30.1 713 7931 1.39 x 10 1.84
1800 31.4 737 7499 0.62 x 10 1.74
2100 35.8 745 7235 0.38 x 10 1.62
2400 40.2 748 6952 0.26 x 107* 1.52
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Fig. 3 Simulated MP of (a) temperature contour plot, (b) maximum
temperature, and (c) dimensions at varying process param-
eters

substrate in the simulation. Hence, this model was employed
for additional simulations to generate a process map for the
Ni625 alloy.

Various conditions were simulated to assess fabrication
feasibility using these process parameters. Figure 3 illustrates
the simulated temperature contour plots and the maximum
temperature of the MPs under nine different conditions,
accompanied by their respective sizes. As shown in Figs. 3(b)
and 3(c), with an increase in P from 100 to 160 W (while V is
constant at 5 mm/s), the maximum temperature increases
from 2335 to 2725 K, and the width of the MPs increases
from 540 to 780 mm; by contrast, increasing V when P is
constant causes both the maximum temperature and the
width and depth of the MPs to remain almost constant. The
highest temperatures and dimensions of the MPs indicated
a significant dependence on P but less dependence on V.
Consequently, MPs were formed under all conditions, and
the maximum temperature exceeded the melting point of the
Ni625 alloy at 1623 K [29], which allowed us to proceed with

the experiments.

3.2. Microstructural Analysis

The fabricated state, porosity, and cracks of the samples
produced under the nine simulated conditions were inves-
tigated via cross-sectional image analysis using an optical
microscope. All samples, except S7, were successfully manu-
factured, as shown in Fig. 4(a); however, S7 could not be
completed because the powder adhered to the nozzle owing
to the highest energy density input. The optical density
shown in Fig. 4(b) was measured from optical images of the

polished surfaces of the samples. Five images were taken
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Fig. 4 (a) Appearance of the LP-DED fabricated samples and (b)
optical density

from different locations on the polished surface of each
sample at 200X magnification. The optical density of these
images was then measured using Image] software, and the
average was calculated. As shown in Fig. 4(b), most samples,
excluding S2 and S3, exhibited a dense structure without
any visible cracks; this resulted in a satisfactory industrial
density of over 99.5% [3], [30], [31]. However, samples S2
and S3 showed noticeably lower density values with irregu-
larly shaped pores caused by the lack of fusion owing to the
lower energy density input. It can be generally observed that
densification increases with increasing P and decreases with
increasing V. This behavior is more significant in samples S1
to S3 at 100 W, while it is less pronounced in samples $4 to S9
at 120 W and 160 W. This suggests that at lower P settings,
the impact of V on densification is more pronounced, whereas
at higher P settings, the effect of V becomes less significant.
Consequently, optimizing P and V parameters is crucial for

achieving desired densification levels in different samples.
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Fig. 5 (a) Schematic of the MP microstructure and (b) columnar-
equiaxed transition criteria, adapted from [27] with permis-
sion [27], [32], [33]

The microstructure of AM materials can be explained by
the MP microstructure using Hunt’s columnar-equiaxed tran-
sition criteria [27], [32], [33]. As shown in Fig. 5(a), MPs typ-
ically exhibit a bimodal microstructure comprising two types
of grains: ED at the top with no preferential crystallographic
orientation and CD at the bottom that show a preference for
growing from the bottom part to the center along the direc-
tion of the thermal gradient [21], [33]-[35]. This is attributed
to the higher G/R ratio at the bottom part of the MP and the
lower G/R ratio at the top, as illustrated in Fig. 5(b), where



EBaMIRIVF—HREEIC KD NiSGEDER O D1V RD

G/R is the grain morphology factor determining either ED or
CD, and G X R is the cooling rate that determines the size of
the grain. Typically, the extremely high G and G X R values in
the AM process foster directional solidification, and enhance

the textures of the microstructures of alloys [36], [37].

15 mm/s

Fig. 6 SEM images of the YZ plane of the samples with (a) higher
magnitudes containing PDAS and (b) lower magnitudes
containing CD and ED regions

The dendrite microstructural features, including the PDAS
size and shape of the grains of the samples, were character-
ized by observing the SEM images of the aqua regia-etched
YZ cross-section. PDAS is one of the factors in influencing
mechanical properties and it was known that smaller PDAS
increases various mechanical properties [25], [26]. As shown
in Fig. 6(a), among the samples, S7 yielded the highest
PDAS with a value of 3.7 = 0.1 mm, while S3 yielded the
lowest PDAS with a value of 1.7 = 0.3 mm; consequently,
the PDAS increased as the P increased and V decreased. In
contrast, as shown in Fig. 6(b), all samples exhibited a
bimodal grain microstructure consisting of CD and ED
regions. Samples S7 to S9, fabricated with the highest P of
160 W, exhibited a predominance of CD, while samples S1 to
S3, fabricated with the lowest P of 100 W, displayed an
almost exclusive ED presence, and resulted in a trend that

shifted from an ED-dominant to CD-dominant microstruc-
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ture with increasing P and decreasing V, respectively;
namely, high P values increased the dendrite structure,

which is consistent with other research [14].
4 I“ | ‘ -
B R\ \ \ \

10um
(b) BSE Mo Nb Fe R
--

Fig. 7 EDS maps of samples of (a) S7 and (b) S3

The elemental microsegregation of the samples was ana-
lyzed using EDS mapping. Figs. 7(a) and 7(b) illustrate the
distributions of the main elements (Ni, Cr, Fe, Nb, and Mo)
in samples S7 (with the highest energy density) and S3,
respectively. The Mo and Nb contents in the interdendritic
regions were higher than those in the dendritic regions, as
indicated by the yellow arrow. Both samples exhibited sig-
nificant Mo and Nb segregation with no clear differences in
their segregation behaviors. Based on the obtained results
and previous reports, it can be concluded that the observed

phase corresponds to the Laves phase [7], [16], [19]
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Diffraction angle, 20 (deg.,CuKa)
Fig. 8 XRD patterns of the LP-DED fabricated samples

XRD analysis was conducted on the polished YZ cross-
section of the samples to confirm the phase states. As shown
in Fig. 8, all the samples exhibited peaks corresponding to
the reference Ni (PDF #04-0850) in the XRD analysis. Inter-
estingly, in sample S7, the relative intensities of the (111)
and (200) peaks were similar, even though (111) has the
highest-intensity peak, indicating that (100) tends to be ori-

ented in the BD (z-direction), which is in agreement with
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other studies [3], [7], [38], [39]. However, all samples exhib-
ited a minor peak shift to a lower diffraction angle compared
with Ni (PDF #04-0850), implying the presence of residual
stress in the samples [3], [38].

m

101

I G

Fig. 9 EBSD (a) inverse pole figure maps and (b) the corresponding
{001} pole figures with multiples of uniform distribution
(MUD) values of the YZ plane

One of the key features of AM that influences the mechani-
cal properties is the crystallographic texture [36], which was
investigated using EBSD. As shown in Fig. 9 (a), by increas-
ing P and decreasing V, directional grain growth occurs
along the z-direction with a {100} crystallographic orienta-
tion, which is an easy growth direction for the FCC crystal
structure [3], [36], which was observed in the samples. The
values of the texture strength measure, MUD, increased as P
increased and V decreased; however, apart from sample S7,
no distinguishable crystallographic textures were observed
for the samples, and S7 exhibited the highest texture with
most grains aligned in the {100} crystallographic orientation;
this finding is consistent with the XRD results shown in Fig.
8.

3.3. Tensile Properties
A tensile test was performed at RT, and the results showed
trends corresponding to the features of the microstruc-

ture. As shown in the optical images in Fig. 4, the porosity
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Fig. 10 Tensile stress-strain curves of the samples

increased with V in the sample fabricated at the lowest P
of 100 W, whereas the elongation (El) of these samples
decreased, as shown in Fig. 10(a). However, with an increase
in V, the minor decreases in the PDAS and grain size shown
in Figs. 6 and 9 led to a minor monotonic increase in the
ultimate tensile strength (UTS) for the samples produced at
P =120 W and 160 W. Consequently, the tensile properties
exhibited negligible variations because fewer changes were

observed in the microstructure.

34. Process Window

Ep (i/mm?)
70.00

180

60.00
160

50.00

40.00

PW)
3

30.00

1204 @
20.00

100

10.00

10
V (mm/s)

15

Fig. 11 P-V process map with Ep contour

A process map illustrating the relationship between P, V,
Ep and the feasibility of sample fabrication was established
based on the experimental data obtained in this study. Figure
11 illustrates that the pink region represents high Ep, while
the blue region represents low Ep. Additionally, samples S2
and S3, located in the low Ep, area, exhibited higher porosity
owing to insufficient fusion. Conversely, sample S7, situated in
the high Ep area, was not fully produced because of powder
adhesion in the nozzle. Consequently, the approximate optimal

region is indicated by a yellow line.
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4 Discussion

4.1. Pore Formation and Mechanical Property Impact

Pores are one of the major defects that significantly affect
the mechanical properties of parts; which can primarily
occur owing to both high- or low-energy input, as well as the
insufficient overlap of laser tracks [40].

High-energy input during the melting process can result
in the formation of an unstable MP at extremely high tem-
peratures and severe Marangoni convection, which in turn
leads to the generation of spherical pores either by trapping
the protective gas (Ar) or metallic vapor [3], [40]. As shown
in Fig. 4(b), samples S7 and S1 fabricated with a higher
energy density showed spherical pores with a maximum
diameter of 40 mm. These pores were primarily formed
owing to the trapping of Ar gas and were unlikely attributed
to metallic vapor because of the high melting points of all the
main elements of the Ni625 alloy. It is known that spherical
pores with diameters < 130 um have negligible detrimental
effects on the mechanical properties of the material [3].
Moreover, as illustrated in Fig. 10(a), sample S1 displayed
satisfactory tensile properties, despite the presence of
spherical pores.

Low-energy input cannot completely melt the metallic
powder in the previously deposited layer, thus leading to
irregularly shaped lack of fusion pores, as shown in Fig.
4(b). Samples S2 and S3 produced with lower energy input
contained irregularly shaped pores with sizes over 100 mm;
these samples exhibited lower elongation tensile properties,
as shown in Fig. 10(a).

Insufficient overlap among laser tracks can also cause a
lack of fusion pores, which may be attributed to a large
hatch distance and/or layer thickness [40]. However, in this
study, the primary cause of the lack of fusion pores was

identified as low-energy input, predominantly due to low P.

4.2. Effects of P and V on Grain Size and Morphology

P and V are the primary process parameters used to adjust
the energy density to tailor the microstructure, and they
significantly affect the MP solidification process parameters
G and R [27], [32], [33]. Therefore, a comprehensive under-
standing of G and R is crucial for predicting or explaining the
microstructural features observed in experimental samples,
and simulations are an effective tool for their calculation [27],
(411, [42].

As shown in the solidification map in Fig. 5(b), G X R is
the cooling rate that determines the size of the grain,

whereas (G/R) is the morphology factor that determines the
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shapes of the grains. In this study, a maximum cooling rate
of 3.5 x 10" K/s was achieved for sample S3, which is close
to the intrinsic cooling rate of LP-DED, which ranges from
10° to 10* K/s [21].

At increasing P and decreasing V values, the PDAS
increased while the grain shapes shifted from being pre-
dominantly ED-dominant to CD-dominant, as shown in Fig.
6(b). It is believed that these behaviors can be attributed to
the changes in G X R and G/R, as illustrated in Fig. 12.

15
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Fig. 12 Simulated (a) average G x R and (") G x R contours, and
(b) average G/R and (b’) G/R contours

As shown in Fig. 12(a), the impact of P on G X R is minor
at low V values but becomes significant at high V. Therefore,
the G X R values of the samples are almost the same at V =
5 mm/s, and the PDASs of these samples do not change
significantly, as shown in Fig. 6(a). Conversely, G X R
increased as a function of V as also proven by other
researchers [27], [41], [42], and the highest and lowest G x
R values were obtained for S3 and S7, respectively; accord-
ingly, S3 and S7 respectively exhibited the lowest and high-
est PDAS values equal to 1.7 + 0.3 mm and 3.7 £ 0.1 mm,
as shown in Fig. 6(a).

As shown in Fig. 12(b), G/R is less affected by P but is
significantly affected by V; additionally, G/R decreases as V
increases, thus suggesting that CD increases with decreas-
ing V. Correspondingly, the directional grain growth along
the zdirection with the {100} crystallographic orientation is
most significant in the samples with the lowest V of 5 mm/
s, as shown in Fig. 9.

As shown in Figs. 12(a)) and 12(b’), higher G/R and lower
G X R values are observed at the bottom of the MP; in con-
trast, lower G/R and higher G X R were obtained at the top
of the MP [27], [41], [42] and these behaviors are most
significant at low V, thus indicating that the morphology of
the microstructure is prone to CD. Correspondingly, the
texture strength measure MUDs were higher in fabricated

samples with the lowest V, as shown in Fig. 9.
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4.3. Verification of Tensile Properties

Although there were no dramatic differences in the tensile
behavior of each sample in this study, the results were still
comparable to the tensile results from other existing studies.
As illustrated in Fig. 13 and as listed in Table 3, the UTS and
yield strengths (YS) of samples exhibited minor changes,
with UTS changing from 1008 + 2 to 941 = 9 MPa and YS
changing from 682 = 11 to 640 = 7 MPa. However, in the
samples fabricated with the lowest P of 100 W, the elonga-
tion noticeably decreased as V increased owing to the higher
porosity caused by the lack of fusion, as shown in Fig. 4.
Conversely, according to the reference data in Table 3, it is
known that the Ni625 alloy can be fabricated using a broad
range of process parameters (for example, P may change
from 220 to 1500 W and V from 8.3 to 33.3 mm/s) yielding
higher tensile properties than casting.

In addition, based on the literature data listed in Table 3,
the UTS decreases at increasing P. A higher P not only
increases the evaporation [21] of Al, Cr, Fe, and Co in the
Ni625 alloy by increasing the MP temperature, but also
accelerates precipitation growth owing to a lower cooling
rate, thus leading to a degradation of mechanical properties.
Therefore, using P values as small as possible is advanta-
geous for the microstructure and mechanical properties of
the material and machine maintenance. In this study, tensile
properties similar to those reported in other research stud-
ies [71,[13],[14],[18] were obtained by using a lower P com-
bination with a small hatch space, as shown in Fig. 13. A
small hatch space increases remelting, which reduces the

lack of fusion [43] and increases the ED grains [3].

This study is believed to be the first report on the optimi-
zation of the strength and ductility of Ni625 alloys using a
relatively low P value, thus demonstrating that high-perfor-

mance Ni625 alloys can also be fabricated with lower P.
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Fig. 13 Comparison of tensile properties in this study with those

obtained in other research studies

5 conclusion

Extensive empirical testing on the Lasermeister was per-
formed with common AM materials, including Fe-, Ni-, and
Ti-based alloys. Herein, to develop process maps for the
Ni625 alloy specific to this machine, the processability,
microstructure, and mechanical properties of the alloy were

experimentally and numerically investigated under various

Table 3 Comparison of process parameters and tensile properties in this study with those obtained in references

Label P %4 Q d Ep=P/(Vd) UTs YS El
W) (mm/s) (g/min) (mm) (J/mm?) (MPa) (MPa) %)
S1 100 5.0 2.0 0.5 40.0 951+7 655+15 42+2
S2 100 10.0 4.0 0.5 20.0 1008 =2 682+11 36=x1
S3 100 15.0 4.0 0.5 13.3 10057 674+13 28+4
S4 120 5.0 2.0 0.5 48.0 941+9 640+7 42£2
S5 120 10.0 4.0 0.5 24.0 959+ 3 666 7 41+1
S6 120 15.0 4.0 0.5 16.0 989+4 669+12 37+1
S7 160 5.0 2.0 0.5 64.0
S8 160 10.0 4.0 0.5 32.0 944 +4 67010 42+1
S9 160 15.0 4.0 0.5 21.3 960+ 6 672+9 40=1
[7] 220 8.3 2.3 0.4 66.0 1020.9 675.8 23.1
[14] 330 33.3 7.0 0.4 14.1 1073+5 723+23 26+2
[15] 500 12.5 2.5 1.2 33.3 882+7 480+ 20 36+£5
[19] 1500 15.0 7.5 5 20.0 733.7 500.4 29.4
[29] Casting 485.0 275.0 25.0
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fabrication parameters. Key findings include:

1. A simulation model was established to predict the MP
thermal history, including the dimensions and G and R
rates.

2. The dimensions and highest temperatures of the MP were
considerably affected by P but less affected by V, leading
to high P values and increased size and maximum tem-
perature of the MP.

3. Fully dense Ni625 alloy parts (> 99.5%) were fabricated
under conditions where P was > 100 W and V was in the
range of 5-15 mm/s.

4. As P increased and V decreased, a corresponding increase
in the dendritic structure and texture was observed. Nota-
bly, the sample synthesized with the highest P value of
160 W and lowest V value of 5 mm/s exhibited the most
pronounced dendritic structure and texture.

5. A positive correlation was observed between the micro-
structure and tensile properties with lower elongations for
finer microstructures. In particular, sample S3, which had
the finest microstructure and highest porosity, exhibited
the lowest elongation.

6. P ranged from 100 to 160 W, V varied between 5 and 15
mm/s, and a corresponding process map for Ep was
established.

7. The samples showed tensile strength values comparable
to those in other research studies, with UTS and YS rang-
ing from 1008 + 2 to 941 = 9 MPa and from 682 = 11 to
640 = 7 MPa, respectively.

This study demonstrated that a combination of lower P
values and smaller hatch spacings can effectively strengthen
Ni625 alloys. It was also found that there several parameters
can be set to achieve similar outcomes. Indeed, these find-
ings pave the way for the formulation of various “recipes” in
the future tailored to the shape and complexity of different

parts, thus opening new avenues for part development.
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Advanced Technology Research & Development Materials &
Advanced Research Laboratory) and Daizo Saito (Hikari
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Numerical Assessment of the Applicability of
Geometry-based Force Inference on Homogeneous
and Heterogeneous Cells'

Shou MIYASAKA, Keita IZUMI, Satoru OKUDA and Yuichiro MIKI

MRRICIERT 2103, MRRDEEE, B, DTFREREFENGE, CEIFBREEZLEYZIRFUICREZNIFTT I EN
HWo5NTWD. ZOHZATET D EIF, EROMBBFHOFEICAODTgEMZMO TH Y, EFNHIREZHTPIEREE
BEMTICBVTEBLGREIZRICT TEHHFINTVD. HFICEZWMRTHECEWVTIE, FERENTRRLGEES
MBEURBWIHEFEANFEZEDTVS. ZORTHARSHIER UL, MIEOXIRNEROHCETNTEE
UTEHBRBICIER T 2 NZEME S 2FAFHEELGAEE UTGEESNTWVD. UL ULED'S, ZDOFEDE P FIRE
MCTDICIFBASNTVRN. ZTTEAWETIE, YZaU—Y3VEFIVTEHD 2 RT/N—T v I RETILERWV
T, BBESLUANEIERIIRRICNT 2 ZOHEFAOBRATEEZHENICHEL . #EY=a2U—Y3avnsiE
SNIEBEBEEHEEFECKDHEEBEZ LR UCER, BELGHRERICSVLTHERE SMIROEME S DBICERIRE
BNERSNe. &BIC, AEBEGHRRICEVTD, TOFENTDICEBETETH SRR U, KIFFROLE
RE, IHEFEZEZMRIHHICERS 2BRICERABARZIRHTETZ2DDTH Y, SHROMIIEZHT OIS ERS
DHREICFES5IDDDEEZEAIATND.

The measurement of cellular forces, which reflect crucial biological attributes, has the potential to replace
conventional cell assessment methods, such as morphology, proliferation, and molecular expression
analysis, in medical cell diagnosis and cell culture studies. In medical cell evaluations, force inference
techniques have gained prominence due to their non-invasiveness and lack of requirement for specialized
equipment. Among those techniques, the method proposed by Ishihara et al., which estimates forces in
densely packed cells based only on cell geometry, is a promising method. However, its applicability range
of this method has not been fully established. In this study, we employed a two-dimensional vertex model
to numerically assess the applicability of this method on homogeneous and heterogeneous cells. Our
comparisons between the true values from numerical simulations and the estimated values from the
inference method revealed a significant correlation between estimation accuracy and cell roundness in
systems of homogeneous cell. Moreover, the method demonstrated efficient force estimations in
heterogeneous-cell systems. These findings may be useful when the force inference method is employed
to evaluate medical cells.

Key words 7itie, #@sHE, N—F v I REFIL, EEGR, MIREEHE
force estimation, cell assessment, vertex model, medical application, tissue mechanics

. potential to replace conventional cell assessment methods,

1 Introduction o .
such as morphology, proliferation, and molecular expression

In medical cell diagnosis and cell culture studies, intracel- analysis. For instance, the mechanical properties of cells can

lular forces, which reflect biological properties, have the be used to identify senescent cells, which are characterized
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by a stable cell cycle arrest induced in response to stress [1].
This chronic inflammatory state fosters a pro-tumorigenic
microenvironment, promoting cancer initiation, migration,
and metastasis. The in vivo detection of senescence neces-
sitates the examination of fixed or deep-frozen tissues, as
in the immunohistochemical analysis of frozen samples [2].
However, there is considerable clinical demand for real-time
bioimaging techniques. Senescent cells exhibit enhanced
mechanical maturity at adhesion points, leading to the trans-
mission of greater traction forces to the substrate. Conse-
quently, the detection of senescent cells can be achieved by
observing alterations to their cell morphology [3] or quantify-
ing the mechanical forces they generate. There are numerous
other instances where the state of a cell and the mechanical
stress exerted on it are closely related [4], [5].

Many approaches have been proposed for investigating
the mechanical properties of cells. These approaches can be
divided into two types: one involves applying force directly
to cells and measuring the amount of cell deformation as an
equivalent of the force on a cell [5], [6], while the other
involves non-invasive measuring physical or chemical indices
that are indirectly related to cellular forces [7], [8]. Despite
the efficacy of these methods, their invasiveness, expense
associated with the preparation of specialized platforms, and
limited throughput pose substantial challenges for practical
applications, such as cell assessment [9].

In order to address these challenges, numerical inference
methods have attracted attention. Such methods estimate ten-
sion at cell-cell boundaries and intracellular pressure under
the assumption of force equilibrium among cells [9] — [12].
Specifically, the approach proposed by Ishihara et al. [9] uses
Bayesian statistics to deal with the indeterminacy inherent in
the estimation process [9], [10], [13], [14]. This non-invasive
technique does not require specialized equipment and can be
readily integrated with a conventional microscope. However,
its applicability to actual cell evaluation has limitations. The
validation of this method has focused on a limited set of
parameters for homogeneous cells using Drosophila wing
cells as a model. Thus, to expand its application to cells uti-
lized in medical cell evaluation, such as human cells, it is
essential to widen the scope of validation.

In this study, we investigate the applicability of the force
inference method proposed by Ishihara et al. [9]. To achieve
this, we apply the method to the cell morphologies derived
from numerical simulations using a two-dimensional (2D)
vertex model and assess the dependence of estimation accu-
racy on cell behavior by comparing simulated and estimated

forces. Furthermore, by analyzing the correlation between
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estimation accuracy and cell morphology, we identify the
conditions under which the inference method has high accu-
racy. Based on these results, we discuss the applicability of
the inference method for homogeneous and heterogeneous

cells.

2 Methods

To assess the applicability of the force inference method
proposed by Ishihara et al. [9], we conducted numerical
simulations utilizing a 2D vertex model and then applied the
inference method to the cell morphologies derived from the
model. In this approach and model, cells are presumed to be
densely packed and are represented as simplified polygonal
shapes with straight edges. An overview of the force infer-
ence method and a description of the 2D vertex model are

given in the following sections.

2.1. Force Inference

The force inference method estimates the tension at cell-
cell boundaries and intracellular pressure by solving the
force balance equation at each vertex (Fig. 1(a)). The posi-
tion vector of the i-th vertex is denoted by r.. If there are »;
vertices connected to the i-th vertex through edges, the
forces acting on the i-th vertex in the x and y directions are

given by

7 :ix/— — X T, +§:y(jmodm)+1 - P,
|rj —n—| 1 2 M

_ < Y=Y ] o x(/mudm)+1_xj Y
f;y_j21|rj—ri|71]+jzl 2 P/?

where 7 identifies the vertex, T} is the tension on the j-th
edge, and P is the pressure of the j-th cell adjacent to both
the jth and (7 + 1)-th edges. Considering Eq. (1) for all ver-
tices in the system, the vector F(:(ff‘,fly, fz",ny,...)) con-
taining all xy elements of the forces can be written as
F=AS, )
where S (= (Ty, T,
marizes the edge tension and cell pressure to be estimated

..., P1, P, ..)) is the matrix that sum-

and A is the matrix that summarizes the coefficients that
reflect cell morphologies. Since the cell deformation pro-
cess is quasi-static under the low Reynolds number
assumption, the tensions and pressures are balanced at each
vertex. Thus, the force balance equation can be formulated
as
AS = 0. ®3)
A Bayesian estimation technique is used to solve Eq. (3).

Specifically, the prior function is assumed to be a Gaussian
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(a) Balance of forces

Tension
Pressure

(b) T1 transition

tf <t S ti‘,otal

Fig. 1 Numerical simulation using a 2D vertex model
(a) Diagram of forces around vertex in 2D vertex model: Blue arrows represent intracellular pressure toward the
vertex and red arrows represent tension at cell-cell boundaries. (b) llustration of T1 transition implemented in 2D
vertex model: The left and right cells approach each other. When the length of the edge shown in red becomes shorter
than a certain threshold, the cells acquire a common edge and top and bottom cells separate. (c) Flow of 2D vertex
model: In the period 0 < ¢ < ¢ the system is relaxed by adding a fluctuation term to the line tension. In the period # <
t < tow, the system is transformed to a steady state to minimize energy by removing the fluctuation term.

distributed around some positive tension value. The hyper-
parameter, which represents the ratio of the variance of the
prior function to that of the likelihood, is calculated by
maximizing the marginal likelihood. The estimation of S is
then accomplished by maximizing the posterior distribution.
Further details regarding this inference method are

described in previous studies [9], [10].

2.2. Acquisition of Stress Field using 2D Vertex Model

To evaluate the accuracy of the force inference method,
numerical simulations were conducted using a 2D vertex
model [15]. The simulations were performed on a system
that contained 100 cells confined within a box measuring 10
units in the x and y directions. Periodic boundary conditions
were applied to all boundaries. The motion of each cell was
expressed through vertex movements under quasi-static
conditions and rearrangements between cells were
expressed through the T1 transition (Fig. 1(b)) by recon-
necting edge connections based on vertex movements [16].
The reconnection was performed when the edge length
became shorter than the threshold, /7y = 0.05, a value cho-
sen to be small enough to affect the calculation of cell mor-
phology. In the vertex model, the cell morphologies were
determined by minimizing the potential energy of the sys-
tem. The cellular network was sufficiently relaxed before the
calculation to avoid local minima. In this section, the valida-

tion of the force inference method using the simulation
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results and details of the simulation procedure are discussed
first, and the applied parameter settings are presented later.

In the static state, the mechanical force balance of cell
configurations can be represented by a potential energy

function [17]. The potential energy is defined as

Uzczdig(si —seq)2 + Ceu%ﬁ:f&b, @
i i J

where s; is the area of the i-th cell, p; is the perimeter of the
i-th cell, J; is the length of the j-th edge, the first term repre-
sents the area elasticity, the second term represents the
perimeter elasticity, and the third term represents the line
tension. The area elastic modulus K, the preferred area s,
and the perimeter elasticity 7; are parameters that determine
the mechanical behavior of the system. The perimeter elas-
ticity I; is randomly assigned to each cell according to a
Gaussian distribution with mean g and standard deviation or.
The line tension /; is affected by the actin-myosin contractile
force at cell-cell boundaries. The pressure of the é-th cell and

the tension at the j-th edge in the static state are calculated

as
B :_ﬂ:—K(sz‘_Seq)
0s
oU K
T :_E:Fij)i +Liapia + A,

where p; and p;,; are the perimeters of the #-th and (7 + 1)-th
cells, including the j-th edge, respectively.
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To compare the estimated values with the true values, the
true and estimated tension values were scaled by their
respective scaling factors in accordance with a previous

study [9]. For example, for the estimated values, the scaling

factor, denoted by ¢, was determined as ¢ =1/ Tet, where
T.. is the mean value of the estimated tension. The scaling
factors were chosen such that the average tension values
were equal to 1. The true and estimated pressures were
scaled using the same factor ¢ to ensure that the average
pressure values were 0; that is, P =cPuy +Ap, where
Ap =—cP and Pu, is the mean value of the estimated pres-
sure. Using the scaled true and estimated values, we calcu-
lated the estimation accuracy in terms of the root-mean-

squared error (RMSE) o, as

ey = \/Z?“" (i)esti - F)truei)z + Z?dgc (Testj - 7~1truei )2 i (6)

Neell + ”edge

where P.; and Py.; are the scaled estimated and true pres-
sures, respectively, for the i-th cell, 7. is the number of cells,
Towt; and T are the scaled estimated and true tensions,
respectively, for the j-th edge, and 7.4 is the number of
edges.

The cell morphology and force in the static state were

obtained by calculating vertex movements:

dr;
nE:_VUr (7)

where 7 is the friction coefficient. The numerical integration
of Eq. (7) was conducted using the first-order Euler method
with time step 4¢t. Topological reconnection of edges was
carried out when the edge length was less than the thresh-
old value, /7.

To obtain a system state with potential energy near the
global minimum, simulations using the annealing method
were performed. Two distinct processes were carried out in
sequence. First, a fluctuation process was calculated, in
which the fluctuation of the line tension 4; in Eq. (8) was
incorporated during the period 0 < ¢ < #. Second, a relaxation
process was calculated, in which the fluctuation was gradu-
ally reduced during the period # < ¢ < tu (Fig. 1(c)). The line
tension /; is written as

A+ if 0<t<t,
/ :{Af+a)j exp(—t) if ty <t<tioa’ ®

where the constant A represents the actin-myosin contractile
force. Its value varied across cell-cell boundaries according
to a Gaussian distribution, Af ~ N ( Ua, 04 ), where 1, and o
denote the mean and standard deviation, respectively. The
variable w; is colored noise with time correlation. Its time

evolution is given by

Table 1 List of constants and variables used in 2D vertex model

Parameter Description Set value Unit
dt Time step 0.01 n/K
tiotal Total simulation time 2000 n/K
t Time interval for intercalation 50 n/K
Seq Ideal area 1.0 1
ly Length of one side of initial cell 0.62 Seq
Deq Ideal perimeter 3.7 \/Q
In Limit length for T1 transition 0.05 Seq
Cn Correlation factor of length after T1 transition 1.5 -
n Friction coefficient of vertex 1.0 1
Area elastic modulus 1.0 1
r Perimeter elasticity Control Ks,,
ur Mean of perimeter elasticity Control Ks,,
or Standard deviation of perimeter elasticity Control Ks,,
A Line tension Control K(s,)?
s Mean of constant tension term A° Control K(s.)*"?
oy Standard deviation of constant tension term A° 0.05 K(s.p)**
tr Term used to set thermal fluctuation 1000 n/K
7 Relaxation time of tension fluctuation term w 20.0 n/K
oy Coefficient in fluctuation term 10.0 K(s.,)*"*
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Table 2 Typical ranges of parameters with “Control” as set value in

Table 1
Parameter Range
r 0.05-0.20
i 0.05-0.20
I -1.4-0.5
o4 0.01-0.04
da)j(t) 1
=——aw;(t)+¢&. 9
it T a’;( ) &i )

where ¢ is white noise according to a Gaussian distribution,
& ~ N(O,Gf» /rf»), where orand 7 denote the amplitude and
correlation time of w;, respectively [18], [19].

Table 1 presents the physical and numerical parameters
utilized in the simulations using the 2D vertex model. The
unit length was set to \/Q , the unit energy was set to KsZ,
and the unit time was set to # /K. The parameters I', ur, or,
and yu, are control parameters that reflect a heterogeneous

cellular system; their respective ranges are shown in Table 2.

3 Results

To comprehensively investigate the applicability of the
force inference method, we conducted two distinct analyses.
First, we assessed the accuracy of the estimated cell behav-
ior in a system with homogeneous cells. Numerical simula-
tions using the 2D vertex model were performed to obtain
cell morphologies, as well as the tension at cell-cell boundar-
ies and cell pressure, within a wide range of parameter val-
ues. The force inference method was then applied to the
simulated cell morphologies to estimate the tension and cell
pressure. In addition, estimation accuracy was calculated for
each parameter set by comparing the forces obtained from
the simulations and estimations. Second, we examined the
applicability of the inference method to a system with het-

erogeneous cells.

3.1. Dependence of Estimation Accuracy on Cell Behav-
iors

First, the inference method was applied to the cell mor-
phologies obtained from numerical simulations of homoge-
neous cells. Figure 2(a) shows the parameter dependence of
estimation accuracy in terms of the RMSE defined in Eq. (6),
where a smaller value indicates higher accuracy. The heat
map in the figure shows that the accuracy increases with
increasing perimeter elasticity and line tension. The RMSE
as a function of 4 and 7" is plotted in Fig. 2(b1, b2), respec-

tively; the RMSE increases nonlinearly with decreasing
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either 4 or I. We define the condition with an RMSE of 0.2
or less as the high-accuracy condition, corresponding to the
parameter region above the solid line in Fig. 2(a). The
threshold of RMSE is defined as the result of two-segmented
linear regression applied to the plots in Fig. 2(b1, b2) as fol-
lows. The points within each of those plots are divided into
two groups based on a specific value of 4 or I'. For each
group, a regression line is obtained using the least squares
method, and the grouping is performed to minimize the sum
of the residuals of these regression lines. The RMSE value
of the intersection point of these two regression lines is
extracted for the plot. This process is carried out for all the
plots in Fig. 2(bl, b2), and the largest RMSE value is
defined as the threshold.

3.2. Correlation between Estimation Accuracy and Char-
acteristics of Cell Morphology

We examined the relationship between cell morphology
and estimation accuracy by analyzing the dependence of cell
morphology on the line tension 4 and perimeter elasticity 7.
Following a previous study [17], we divided the parameter
space into three regions based on the ground state of the
energy function (Eq. (4)), as shown by the dashed line in
Fig. 2(a). We then compared cell morphology and estimation
accuracy (Fig. 2(d1-d4)) as well as the true and estimated
force values under four typical conditions, namely (4, I") =
(-0.8,0.11) (Fig. 2(cl)), (4, 1) = (-0.3,0.11) (Fig. 2(c2)),
“, I =(-0.3,0.16) (Fig. 2(c3)), and (4, I') = (0.1, 0.04)
(Fig. 2(c4)). For the first condition, where the estimation
accuracy is low, the cell shapes tend to be elongated and
have multiple configurations that can form at the energy
minimum. In contrast, for the other conditions, where the
estimation accuracy is relatively high, the cell shapes tend to
be relatively round.

For a more quantitative understanding of the relationship,
we computed several characteristic cell morphologies for
each parameter set (Fig. 3(al-a3)) and compared them with
the estimation accuracy (Fig. 3(b1-b3)). The dependence of
circularity (4zs/p% on the line tension /4 and perimeter elas-
ticity 7" is shown in Fig. 3(al). The circularity increases
with increasing either 4 or I". By comparing this heatmap
and Fig. 2(a), we obtained the circularity dependence of
estimation accuracy (Fig. 3(b1)). For the scatter plot, the
regression line is obtained using the least squares method,
and the circularity value of the intersection between this
regression line and the line of the RMSE threshold is
defined as the circularity threshold: 0.82. Moreover, the

results for the perimeter are shown in Fig. 3(a2, b2). As a
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Fig. 2 Parameter dependence of estimation accuracy in systems with homogeneous cells
(a) Heatmap of RMSE in 2D parameter space of parameter elasticity and line tension (4, I"): Gray cells indicate parameter
sets for which the simulation stopped due to a large distortion of cell morphology. (b1, b2) Dependence of estimation accu-
racy on 4 and I": Dashed line shows the threshold of high-accuracy estimation. (c1-c4) Scatter plots of estimated values and
true values at four representative points (1-4) indicated in (a), namely (4, I') = (0.8, 0.11), (4, ') = (-0.3,0.11), 4, 1)
=(0.3,0.16), and (4, ") = (0.1, 0.04). The parameter set (4, I') = (0.1, 0.04) was used by Ishihara et al. [9] for verifying
their technique: All edge tensions (red) and cell pressures (blue) are plotted. (d1-d4) Cell morphology for four conditions
simulated using 2D vertex model
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Fig. 3 Parameter dependence of cell shape characteristics and correlation with estimation accuracy
(al-a3) Heatmap of cell shape characteristics (circularity, perimeter, and polygonal number) in 2D parameter space of
parameter elasticity and line tension (4, I"): Solid line is the threshold (RMSE = 0.2) and dashed lines divide the param-
eter region defined in a previous study [17]. Points 1-4 correspond to representative points in Fig. 2(a). (b1-b3) Scatter
plots of RMSE versus cell shape characteristics obtained by comparing (al-a3) and Fig. 2(a)
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result, the correlation between the perimeter and accuracy
is opposite to that of the correlation between circularity and
accuracy. This is because a larger circularity generally
results in a smaller perimeter, based on the definition of cir-
cularity (4zs/p®). Furthermore, the results for the polygonal
number are plotted in Fig. 3(a3, b3), where no correlation

with accuracy is observed.

3.3. Estimation Accuracy for Heterogeneous Cells

To investigate the applicability of the force inference
method to systems with heterogeneous cells, we conducted
numerical simulations for various values of perimeter elastic-

ity of individual cells and then applied the inference method

to the resulting cell morphologies. The cell morphologies
are shown in Fig. 4(al-a4), where the color contours indicate
the perimeter elasticity I” of each cell. It is observed that cells
with a lower perimeter elasticity tend to have a larger area.
Scatter plots of the estimated and simulated force values are
shown in Fig. 4(b1-b4). As o increases, the dispersion of
tension and pressure also increases; however, the estimated
values are close to the true values even for large values of or.
Figure 5(a) shows the RMSE for each analysis. As shown in
this plot, the RMSE increases with increasing perimeter
elasticity o,. Nonetheless, the RMSE values for all four
analyses remain below the threshold (RMSE < 0.2), indicat-
ing the possibility of estimating forces with high accuracy, at
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Fig. 4 Cell morphology and estimation accuracy in systems with heterogeneous cells
(al-a4) Cell morphology calculated using 2D vertex model with perimeter elasticity having Gaussian distribution (expressed by
color contour): The results were obtained under the conditions where the standard deviation of the perimeter elasticity is set as o
=0.01,0.02,0.03, and 0.04. (b1-b4) Scatter plots of true and estimated values for each cell morphology
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Fig. 5 Dependence of estimation accuracy and circularity on cell heterogeneity
(a) Dependence of estimation accuracy on the standard deviation of perimeter elasticity o, for system with heterogeneous cells:
Dashed line is the RMSE threshold (0.2). (b) Circularity for each analysis condition: Points represent the mean circularity value
and error bars represent its standard deviation. Dashed line is the circularity threshold (0.82). SD: standard deviation.
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least within the heterogeneous range of o, < 0.4. The distri-
bution of circularity for each analysis is shown in Fig. 5(b).
The average circularity slightly decreases and its variance
increases with increasing perimeter elasticity or. All circular-
ity values are either higher than or comparable to the circu-
larity threshold (dashed line in the figure).

4 Discussion

In this study, we employed a two-dimensional vertex
model to numerically assess the applicability of the force
inference method proposed by Ishihara et al. [9] to systems
with homogeneous and heterogeneous cells. The parameter
map in Fig. 2(a) provides a visual aid for understanding the
applicability of this method. To utilize this map, the perime-
ter elasticity and line tension of the observed cells must be
obtained. These parameters can be derived by comparing
simulated cell morphologies with actual cell shapes, as dem-
onstrated in previous research on Drosophila cells [16], [17].
Our results are consistent with these earlier findings; the
parameters for Drosophila cells fall within the high-precision
range found in our study. Moreover, cell morphology can
serve as an index of applicability. We found that when cell
circularity exceeds 0.82, high-accuracy estimation is
achieved. This suggests that researchers can assess applica-
bility based on cell circularity, which can be calculated using
standard microscopy software such as NIS-Elements (Nikon,
Tokyo, Japan).

Our findings also indicate that this inference method is
applicable to heterogeneous cell systems with a relative stan-
dard deviation of perimeter elasticity below 40%. This is due
to the RMSE values falling below the established threshold
(RMSE < 0.2). Circularity is also a useful index of applicabil-
ity to heterogeneous cell systems, as demonstrated in Fig.
5(b) (circularity values above a threshold of 0.82). Under
actual biological conditions, the mechanical and biochemical
properties of cells may vary for a given cell type due to fac-
tors such as individual characteristics, the cell cycle, and
apoptosis. In our study, we assumed that each cell has a
distinct actin cytoskeleton and that perimeter elasticity has a
Gaussian distribution. Our results show that the inference
method is effective for systems that resemble actual biologi-
cal conditions. By modifying other factors (e.g., ideal cell area
and initial edge length), we can further explore its applica-
bility to heterogeneous systems.

The force inference method has the potential to replace
conventional cell evaluation techniques. In medical cell diag-

nosis and cell culture studies, for example, the mechanical
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properties of cells could be used to identify senescent cells,
which can be distinguished based on altered cell morphol-
ogy [3]. Given that the estimation method is accurate even
for systems with heterogeneous cells, it may be possible to
calculate the force exerted on individual cells and distin-
guish senescent cells from healthy ones based on variations
in applied force. If the forces between the two cell types
significantly differ, the force distribution may become
bimodal. As the prior distribution of Bayesian estimation is
linked to force distribution, a potential avenue for future
research is to update the prior distribution to further expand
the applicability of the inference method. In this study,
numerical simulations were used to validate and demonstrate
the applicability of the inference method in heterogeneous
cells systems, as described above. In order to establish its
applicability to actual cells, it is necessary to quantitatively
measure the forces acting between heterogeneous cells, and

experimental verification is needed in the future.

5 conclusion

Our study demonstrated the potential application of the
force inference method proposed by Ishihara et al. [9] to
heterogeneous cells systems using a 2D vertex model.
Numerical simulations showed the effectiveness of this
method in estimating forces for systems with either homo-
geneous or heterogeneous cells. We also showed the assess-
ment of its applicability using cell circularity. Although we
did not apply the method to actual medical diagnosis, our
analyses suggest its potential use. Force inference methods
have the potential to advance cell evaluation techniques in

biomedicine.
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La,0,-TiO,-based Ultra-high Refractive Index Glasses for
Application as New Optical Elements
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High-refractive-index glasses are essential for downsizing optical systems and improving their
performance. La,0s-TiO, (LT) glasses are promising candidates owing to their remarkably high refractive
indices (> 2.3) and good optical transmittance in the visible range. However, practical application of LT
glasses is limited by their low glass-forming ability and small size of obtainable samples. This paper
reports the development of new multicomponent LT-based glasses with enhanced glass stability, enabling
the fabrication of significantly larger samples (up to 25 mm in diameter) compared to binary LT glass.
Precise refractive index measurements showed values between 2.16 and 2.31. Despite their high
refractive indices, these glasses maintained good transmittance in the visible region. Prototype lenses
were successfully fabricated using a glass molding press, demonstrating their potential for practical
applications. High-energy X-ray diffraction experiment and ab initio molecular dynamics simulations
revealed a unique glass structure characterized by high cation-oxygen coordination numbers and a
prevalence of edge- and face-sharing polyhedral connections, contributing to the high packing density.
Electronic structure analysis indicated that the predominantly ionic nature of the cation-oxygen bonds
increased electron polarizability of oxygen atoms. These findings provide a fundamental understanding
of the ultra-high refractive index exhibited by LT-based glasses.

Key words #HSX, SEHER. &R, £-REE BSHA
glass, high refractive index, structural analysis, ab initio calculation, containerless processing

mance of optical systems such as reduced aberrations, high

7 Introduction

numerical aperture, and adequate working distances [2].

Optical glasses are essential components in various optical
applications, including digital imaging cameras, objective
lenses of microscopes, endoscopes, and binoculars. High-
refractive-index glass is particularly advantageous for minia-
turizing optical systems owing to them requiring less curva-
ture of the lens for achieving the same focal power
compared to that made of low-refractive-index glass [1].

High-refractive-index lenses also contribute to high perfor-
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Recently, augmented reality and mixed reality glasses have
emerged as next-generation smart devices, requiring high-
refractive-index substrates for waveguides to achieve suffi-
cient fields of view [3]. Consequently, the demand for high-
refractive-index optical glass is increasing. However,
developing practical optical glasses with refractive indices
exceeding 2.0 is challenging owing to limitations in glass

stability against crystallization and coloration [4].
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The La;03-TiO, (LT) system is a promising candidate to
address these issues. Binary LT glasses can be synthesized
using containerless processing without requiring typical
network formers such as SiOs, B:03, P;Os, and GeO; [5]-
[8]. LT glasses exhibit significantly high refractive indices (>
2.3) and relatively high optical transmittance in the visible
range despite the high refractive index [6]. The glass-form-
ing region of the binary LT system is reportedly narrow,
ranging from 66.7 to 76.2 mol% TiO,, and the resulting
glass size is typically limited to 2—3 mm in diameter [7]. To
develop LT-based glasses for practical applications as optical
materials, enlarging glass sizes and precisely measuring the
optical properties are necessary. This study aimed to
develop new LT-based multicomponent glasses that enable
larger glass sizes and precise determination of optical prop-
erties. Furthermore, the mechanisms underlying the unique
optical properties of LT-based glasses were investigated by
analyzing the glass structures and electronic states through

diffraction experiment and molecular dynamics simulations.

2 Methods

2.1. Glass Synthesis

Six multicomponent LT-based glasses were prepared.
High-purity La;O3, Y203, TiO», ZrO,, Ta;0s;, Al,03, and SiO,
were mixed in stoichiometric ratios. The oxide components
of each composition and sample name, abbreviated accord-
ing to their composition, are presented in Table 1. For each
composition, the mixed powder was pressed into a cylindri-
cal pellet at 20 MPa and air-sintered at 1200°C for 12 h. The
sintered pellet was placed on the gas nozzle of a self-built
aerodynamic levitation system and levitated using airflow.
The levitated sample was heated using 100 W CO, lasers.
Post-melting, the lasers were turned off, and the melt was
allowed to cool naturally to room temperature to form a

glass.

2.2. Measurements of Thermal and Optical Properties
The glass transition temperature (7,) and crystallization
onset temperature (7) were determined by differential ther-
mal analysis in air at a heating rate of 10°C/min using a
Thermo Plus EVO2 TG8121 thermal analyzer (Rigaku Co.
Ltd., Tokyo, Japan). All glass samples were annealed at
approximately their 7, to remove internal strain. Density was
measured using an AccuPyc II 1340 gas pycnometer
(Micromeritics Instrument Co., Norcross, USA) with an
accuracy of = (.01 g/cm®. Refractive index was measured

using one of three methods, depending on the sample size:

61

the prism coupling, V-block, or minimum deviation methods.
Details of the measurement procedure by the prism coupling
method are described in our previous work [9]. Measure-
ments by the V-block method were performed using a Kal-
new KPR-3000 precision refractometer (Shimadzu Corp.,
Kyoto, Japan) with an accuracy of + 1 x107°. The measure-
ments by minimum deviation method were performed using
an HR SpectroMaster UV-VIS-IR high-precision spectrore-
fractometer (Trioptics GmbH, Hamburg, Germany) with an
accuracy of = 1 x 107 Optical transmittance spectra were
acquired at 300-700 nm using a UH4150 UV-Vis-NIR spec-
trophotometer (Hitachi High-Tech Corp., Tokyo, Japan).

2.3. Diffraction Experiment

High-energy X-ray diffraction (HEXRD) experiment was
conducted at the BL04B2 beamline of the SPring-8 synchro-
tron radiation facility [10] for LTZ using 113 keV X-rays. The
total correlation function (7%(r)) was then obtained by the
Fourier transformation of the structure factors from 0.3 to
22 A7

24. Molecular Dynamics Simulations

Structural models of six LT-based glasses were con-
structed using ab initio molecular dynamics (AIMD) simula-
tions based on density functional theory. Simulations were
performed using hybrid Gaussian and plane wave method
implemented in the QUICKSTEP module of the CP2K code
[11]. Details of the AIMD simulations are shown in Nikon
Research Report Vol. 3. The classical molecular dynamics
(CMD) simulations with the LAMMPS code were used to
create the initial configuration for AIMD simulations [12].
Each simulation model contained approximately 550 atoms.
Multiwin software package was used for post-processing and
electronic structures, including calculations of electron
populations, bond orders, and localized functions were ana-
lyzed [13], [14].

Table 1 Oxide components contained in LT-based multicomponent

glasses
LT La;0s, TiO;
LTZ La;0s, TiO,, ZrO,
LTS La,03, TiO;, SiO;
LTZS La,0;, TiO,, ZrOs,, SiO;
LTZTS La;0;, TiO;, ZrO,, Ta;05, SiO;
LYTZAS La;03, Y203, TiO,, ZrO,, Al,Os, SiO;
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3 Results and Discussion

3.1. Thermal Properties

Table 2 presents the results of thermal analysis and den-
sity measurements. The temperature gap between Ty and Ty,
denoted as AT (= Tx - Ty), is used as a measure of glass
stability against crystallization [15]. The results indicate that
both ZrO, and SiO, enhance the thermal stability of the
glass, with LTZS (containing both ZrO, and SiO») exhibiting
the highest AT among the fabricated samples. Therefore, we
attempted to increase the size of the LT-based multicompo-
nent glasses using a larger-diameter gas nozzle. Conse-
quently, larger glass samples were successfully fabricated:
approximately 10 mm in diameter for LTZ, 15 mm for LTS
and LTZTS, and 25 mm for LTZS and LYTZAS. However, for
the binary LT, glasses with diameter larger than 3 mm could
not be obtained owing to crystallization. Figure 1 shows the
photograph of LT and LTZS.

3.2. Optical Properties

Larger sample sizes enabled precise refractive-index mea-
surements, which were previously challenging with the typi-
cal 2-3 mm diameter glasses obtained by containerless
processing. The refractive indices of LT were measured

using the prism coupling method; LTS and LTZTS were

Table 2 Thermal properties and densities of LT-based glasses

T, (0 T (O AT(C)  p (g/em’)
LT 800 862 62 4.91
LTZ 810 922 112 5.06
LTS 781 916 135 4.57
LTZS 794 973 179 4.88
LTZTS 793 966 173 5.11
LYTZAS 811 920 109 4.89

807068

Fig. 1 Photograph of LT (left, 2.8 mm in diameter) and LTZS (right,
23 mm in diameter): LTZS is polished into disk (3 mm
thickness) for the optical property measurement.
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measured using the V-block method; and LTZ, LTZS, and
LYTZAS were measured using the minimum deviation
method. Figure 2 presents the refractive index (#4) and the
Abbe number (vq) of the LT-based glasses, comparing them
with those of commercial optical glasses. The Abbe number
was calculated from the refractive indices at the F (486.133
nm), d (587.562 nm), and C (656.273 nm) lines as follows:

n—1
ng —Nc

Va=

@

In Fig. 2, the LT-based glasses exhibit significantly higher

refractive indices and relatively larger dispersion compared
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Fig. 2 Comparison of LT-based glasses (cyan circles) and
commercial optical glasses (gray squares) in 4 VS. vg plot

(a)100 C T T T
S 8ol T
3
S 60 — LTZ i
= — LTZS
% 40 - —— LYTZAS .
&
= 20 E
0 | | 1
400 500 600 700
Wavelength (nm) LTZTS
100 [Elin;mimir= 1. T T LTZS
(b) bo
B8 o LYTZAS i
/‘-; O @\ L
s = oo E’ E‘g LTS ik
§ 5gta =T
S 90t o .
O
85 1 1 1 1
1.4 1.6 1.8 2.0 2.2 2.4

ng
Fig. 3 (a) Internal transmittance spectra of LTZ, LTZS, and LYTZAS
(10 mm thickness)
(b) Comparison of Tyonm and nq for LT-based glasses (cyan
circles) and commercial optical glasses (gray squares)



HRAERFADISAICEIT T2 La:Os-TIORBBEINE A S A DI FFHFR

to the commercial optical glasses. LT and LTZ show particu-
larly high refractive indices around 2.3, while the other SiO-
containing compositions have refractive indices around 2.17.

The internal transmittance spectra of the LT-based glasses
(10 mm thickness) are shown in Fig. 3(a). High transmit-
tance is observed in the visible range, with a sharp absorp-
tion edge near 400 nm. Figure 3(b) shows the relationship
between the internal transmittance at 440 nm (7y40nm, 10 mm
thickness) and the refractive index (n4) for both the LT-
based glasses and commercial optical glasses. For both glass
families, Tyonm tends to decrease with increasing #4. How-
ever, the LT-based glasses maintain relatively high transmit-
tance despite having significantly higher refractive indices

than the commercial optical glasses.

3.3. Glass Molding Press

In this study, we developed multicomponent LT-based
glasses with improved thermal stability, achieving glass sizes
significantly larger than the typical 2-3 mm diameter
obtained by containerless processing. These results moti-
vated us to fabricate prototype lenses using a glass molding
press in which glass preforms are reheated and molded into
their final shape. The preform of LT-based glasses was
placed between the molds and heated to a molding tempera-
ture above T of the sample. Once the molding temperature
was reached, the upper mold was pressed onto the glass
preform, giving it the shape of the mold. The molded sample
was then released from the mold and polished to obtain the
prototype lens. Using this method, a 25 mm diameter con-

cave meniscus lens (Fig. 4(a)) and a 27 mm diameter bicon-

a)°” Nikon Nikon Nikon ( ). Nikon Nikon Nikon Nikon
| :

Nikor m\\ Nikon itkon N “n Nika
Nikon
Nikos' Nikon Nikon) Nijkoi kon ’ ‘n Nik
/ 2 ~.
AN / [ Nik™ —«on Ni
Vlkot@!’;?oleo e 2o WS ‘1‘0
likon Nikon N"«ﬂl"' Nikon 0 T

Fig. 4 Photographs of the prototype lenses of LT-based glasses
fabricated using the glass molding test: (a) concave menis-
cus lens (LYTZAS, 25 mm in diameter), (b) biconvex lens
(LYTZAS, 27 mm in diameter), and (c) wafer (LTZS, 41
mm in diameter).
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vex lens (Fig. 4(b)) were fabricated from 20 mm diameter
LYTZAS preforms. Furthermore, a 41 mm diameter, 1 mm
thick wafer-shaped sample (Fig. 4(c)) was fabricated from a
22 mm diameter LTZS preform. No cracks or crystallization
were observed in the molded samples. These results are
expected to significantly expand the application potential of
ultra-high refractive index glasses produced by containerless

processing.

34. Glass Structures

The X-ray weighted total correlation functions (7%()s) for
LTZ obtained from HEXRD experiments and AIMD are
shown in Fig. 5(@@). The AIMD-derived T%(») agrees well with
the experimental result, reproducing both the short-range
order (~1-5 A) and medium-range order (~5-10 A) accu-
rately. However, the mismatch at approximately 4 A suggest
that the M-M distance was reproduced slightly shorter in
AIMD. The R factor, an agreement index [16] between the
experimental and calculated T%()s (calculated over the
range of 1-10 A), was 2.8%. Figure 5(b) shows the struc-

(a) 10 T T T T T T T

—~
D

< 6

=
=
=
~

S o9
T
OO )
edge-sharing

Q
. Soc e
e

face-sharin?;
Fig. 5 (a) X-ray weighted total correlation functions, 7%(r)s, of
LTZ obtained from HEXRD and AIMD simulations. Partial
correlation functions for Ti—O (orange), La—-0O (violet),
Zr—0 (green), O-0 (cyan), and M—M (gray) obtained
from AIMD are also shown. (b) Snapshot of the LTZ
structure obtained by AIMD simulation (c) Snapshot of
edge- and face-sharing TiOg—TiOs polyhedral linkages
from the AIMD-derived structure

Atom colors: Ti (orange), Zr (green), La (violet), and O (yellow)
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Table 3 Average M—0O coordination numbers in LT-based glasses
derived from AIMD

Nr.o Nao Nsio
LT 897 | - |567| - = = =
LTZ | 8.91 - 5.69 | 6.89 - - -
NS 8.48 - | 5.47 | - = - | 4.00
LTZS | 8.83 - 5.68 | 7.06 - - 1 4.08
LTZTS | 8.74 | - 558 1 6.94 6.11 | - | 4.15
LYTZAS | 8.83 | 7.36 | 5.70 | 6.76 | - | 4.80 | 4.26

tural model of the LTZ obtained from AIMD simulation. The
model suggests average M-0O (M denotes the metal cation)
bond lengths of 1.90 A (Ti-0), 2.13 A (Zr-0), and 2.49 A
(La-0) and average M-O0 coordination numbers of 5.69
(Ti-0), 6.89 (Zr-0), and 8.91 (La-0). A distinctive struc-
tural feature of LTZ is the large fraction of edge- and face-
sharing connections between MO, polyhedra (Fig. 5(c)). The
connectivity between TiO, polyhedra in LTZ was 69.8%
corner-sharing, 28.9% edge-sharing, and 1.2% face-sharing,
while the connectivity between LaO, polyhedra was 35.7%
corner-sharing, 48.7% edge-sharing, and 15.7% face-sharing.
These structural features of high coordination numbers and
prevalence of edge- and face-sharing polyhedral connectivity
in LTZ do not follow the well-known Zachariasen’s rules for
glass formation [17].

Regarding the structural features of the LT-based glasses,
Table 3 lists the average M-O coordination numbers
derived from the AIMD simulations. Si, a typical network-
former cation, exhibits 4-fold coordination with oxygen
atoms. By contrast, transition metal cations (Ti, Zr, and Ta)
show higher oxygen coordination numbers (approximately
6-7), and rare-earth cations (La and Y) have even higher
coordination numbers (approximately 8—9 and 7, respec-
tively). Figure 6 shows the average M—O coordination num-
ber (Num-0) and the percentage of edge- and face-sharing
MO,-MO, polyhedral linkages calculated from the AIMD
models. The LT-based glasses in this study exhibit a positive
correlation between the total fraction of edge- and face-
sharing linkages and Ny_o. This suggests that the high pro-
portion of edge- and face-sharing polyhedral connections in
these glasses can be attributed to the high oxygen coordina-
tion numbers of the constituent rare-earth and transition
metal oxides. Edge- and face-sharing polyhedral linkages
reduce the inter-cation distances compared to corner-shar-
ing, resulting in significantly high oxygen packing density in
LT-based glasses [6], and consequently, contributing to the

high refractive index.
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Fig. 6 Correlation between average coordination number (Nu-o) and
the fraction of edge- and face-sharing polyhedral linkages in
LT-based glasses (derived from AIMD simulations)
The dotted line is guide to the eye.

3.5. Electronic Structures

According to Mulliken population analysis [18], the net
charge of atom A (AQ,) is calculated by subtracting the
gross atomic population (Q4) from the nuclear charge (Z4):

AQr=Z ) —Qn )

Q4 is the sum of the net atomic population (@) and half of
the total overlap population ((1/2)X@Qag), Where B represents
an atom bonded to atom A:

QA=QAA+éZQAB ®

Q@an and Q4 are given by:

Qna =Zzz7hcuicvi Ix,‘ (r)x (r)dr @

peA veA i

QAB=ZZZZniCpiniJ (1) 20 (r)dr ®)

ueA veB i

where y,(r) and y.(r) are the atomic orbitals; ¢,; and ¢,; are
the contribution of y,(r) and y.(r) in the molecular
orbital ¢;(r); and #; is the number of electrons in ¢;(r). Fig-
ure 7 presents the results of population analysis based on
above method for oxygen atoms in the LT-based glasses.
The average electronic polarizability of oxygen atoms (ao)
was calculated using the procedure described in [6]. While
the gross atomic population of oxygen (o) shows minimal
variation, the net atomic population (Qoo) and the total over-
lap population (£Qon) exhibit significant changes with oxy-
gen polarizability. The decrease in £Qom with increasing oo
suggests a decrease in covalent nature of O-M bonds.
Furthermore, the increase in Qoo implies an increase in the
number of non-bonding electrons on oxygen atoms, which
likely contributes to the increased oxygen polarizability.
Table 4 lists the average bond orders of M-O0 pairs in each

glass, calculated using the aforementioned Mulliken scheme
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Fig. 7 Results of population analysis and electronic polarizability
of oxygen atoms in LT-based glasses
Dotted lines are guides to the eye.

Table 4 Average bond orders of M—O pairs in LT-based glasses

La-O Y-O Ti-O Zr-O Ta-O Al-O Si-O

LT 0.132, - |0.441| - - - =
LTZ |0.132| - 10.435]0.393 - - -
LTS 0.145 - 0.445 - = - 0.873
LTZS 10.135, - 0.432/0.381 - - 0.853
LTZTS 1 0.136 & - [0.440/0.388 0.524 | - |0.840
LYTZAS  0.1350.241]0.431 | 0.395| - 0.409  0.821

(equivalent to Quo in Eq. (5)). Si—0 bonds exhibit high
values of bond order (> 0.8), indicating strong covalent char-
acter. By contrast, the transition metal and rare-earth cat-
ions, which are the primary components of the LT-based
glasses, exhibit much lower values of bond order, indicating
predominantly ionic bonds with oxygen atoms. These highly
ionic characters increase the net atomic population of oxy-
gen atoms (Qoo), resulting in high electron polarizability of
oxygen atoms.

Finally, the chemical bonding nature was visualized using
the electron localization function (ELF) [19], as shown in
Fig. 8. ELF is an indicator of electron localization in space
[20]. In Fig. 8, the ELF localizes between Si and O atoms,
indicating shared electron pairs and strong covalency of Si—
O bonds. Meanwhile, the spherical distribution of ELF
around oxygen atoms in Ti—O bonds suggests a more ionic

bonding character.
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Fig. 8 ELF isosurface at level of 0.82 for SiO,—TiOs fragment
extracted from AIMD model of LTZS
Colors of atoms: Ti(orange), Zr (green), Si (cyan), and O
(yellow)

4 Conclusion

This study successfully developed new multicomponent
La,03-TiO, (LT)-based glasses exhibiting enhanced thermal
stability and significantly larger sizes compared to binary LT
glasses. The incorporation of ZrO. and SiO, improved glass
stability, enabling the fabrication of samples suitable for pre-
cise optical measurements and prototype lens production via
glass molding press. These LT-based glasses exhibited
exceptionally high refractive indices (nq = 2.16-2.31) and
good transmittance in the visible range, making them suit-
able candidates for a variety of optical applications. Structural
analysis revealed a unique glass structure characterized by
high coordination numbers and abundant edge- and face-
sharing polyhedral linkages, possibly contributing to
increased packing density. Notably, containerless processing
allowed for achieving the glassy structure despite the pres-
ence of large fraction of edge- and face-sharing linkages.
Furthermore, the predominantly ionic character of the cat-
ion—oxygen bonds resulted in increased oxygen polarizabil-
ity, further enhancing the refractive index. This study dem-
onstrated the potential of multicomponent LT-based glasses
for practical applications requiring high-refractive-index
materials. The findings indicate scope for future advance-
ments in the miniaturization and performance enhancement

of optical devices.
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