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教師あり学習において，しばしば専門家にとってもラベル付けが難しいデータ（曖昧なデータ）が存在する．本稿で
は，曖昧なデータが存在する状況下での二値分類問題を検討し，社内で取得した細胞培養データに適用する．曖昧なデー
タはラベル付けが難しいという情報を持っているため，半教師あり学習におけるラベルなしデータとは異なる扱いが必
要である．また，曖昧なデータは訓練データに存在するものの，テスト時は正負の二値に分類するため，正負と曖昧な
クラスによる三値分類問題とも異なる．我々の提案手法は，リジェクト付き分類を拡張する形で定式化した．具体的に
は，リジェクト付き分類は，リジェクトコスト cを有する0-1-c損失に基づいて，分類器とリジェクタを同時に学習す
る方法であるが，我々は0-1-c-d損失として曖昧なデータに対する誤分類ペナルティ dを導入し，分類器とリジェクタ
を同時に学習する方法を提案した．計算の容易性の観点から，我々は0-1-c-d損失の凸の上界となる代理損失を用いて
実装を行った．細胞培養データに対する数値実験を通じて，曖昧なデータから得られる情報を，二値分類問題に有効に
活用できることを示した．

In supervised learning, ambiguous (A) samples that are difficult to label even by domain experts are 
often encountered. In this study, we consider a binary classification problem using such A samples and 
apply our in-house datasets of a cell culture process. This problem is substantially different from semi-
supervised learning because unlabeled samples are not necessarily difficult samples. Furthermore, it is 
different from the three-class classification involving positive (P), negative (N), and A classes because the 
test samples are not to be classified as the A class. Our proposed method extends binary classification 
with a reject option, which trains a classifier and a rejector simultaneously using P and N samples based 
on the 0-1-c loss with a rejection cost, c. More specifically, we propose to train a classifier and a rejector 
based on the 0-1-c-d loss using P, N, and A samples, where d is the misclassification penalty for A 
samples. In our practical implementation, we use the convex upper bound of the 0-1-c-d loss to achieve 
computational tractability. Numerical experiments using the in-house datasets demonstrate that our 
method can successfully utilize the additional information resulting from such A training data.

曖昧なサンプル，リジェクト付き分類，二値分類
ambiguous samples, classification with reject option, binary classification

　　　　　 　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　

1  Introduction

　Supervised learning has been successfully deployed in 

various real-world applications, such as medical diagnosis [₁] 

and manufacturing systems [₂]. However, when the amount 

of labeled data is limited, current supervised learning meth-

ods become unreliable [₃].

　To efficiently obtain labeled data, domain knowledge has 

been used in many applications [₂], [₄]. However, as indi-

cated in some studies [₅], [₆], ambiguous (A) samples that 

are substantially difficult to label even by domain experts are 

often encountered.

　The goal of this study is to propose a novel classification 

method that can manage A samples. Specifically, we consider 

a binary classification problem where, in addition to positive 

(P) and negative (N) samples, A samples are available for 

training a classifier. Because of the characteristics of A 

samples, they are assumed to be located near the boundary 

between P and N classes.

　We may consider employing three-class classification 

methods for the P, N, and A classes. However, because we 

intend to classify test samples only in the P or N class, not in 

the A class, naive three-class methods cannot be directly 

used in our problem. Moreover, they cannot utilize the infor-

mation that the A class exists between the P and N classes. 

Another related approach is classification with a reject option 

[₇], [₈], where A test samples are not classified into P or N 

classes but as rejected (R). However, classification methods 
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with a reject option do not consider A samples in the train-

ing phase; hence, they cannot be employed in our problem.

　Semi-supervised learning may be related to the current 

problem, where unlabeled (U) data, in addition to P and N 

data, are used to train a classifier [₉]. In semi-supervised 

learning, U samples are P and N samples that have not yet 

been labeled, and they are not necessarily difficult samples 

to be labeled. By contrast, A samples in our target problem 

are typically distributed at the intersection of P and N 

classes. Thus, as the problem setups are intrinsically differ-

ent, merely using semi-supervised learning methods in the 

current problem may not be optimal. Our problem and 

related methods are summarized in Table ₁.

Table 1　Problem settings of related and our methods.

Methods Labels in 
training data

Labels 
predicted in 
test phase

Relationship 
among classes

Binary classifi-
cation

P / N P / N None

Three-class Class 1 Class 1 None

classification Class 2 Class 2

Class 3 Class 3

Classification 
with reject 
option

P / N P / R / N R samples are in 
P/N mixed 
regions

Semi-super-
vised learning

P / U / N P / N U samples belong 
to P or N

Our proposal P / A / N P / N A samples are in 
P/N mixed 
regions

　To effectively solve the classification problem involving A 

data, we propose to extend classification with a reject option 

that trains a classifier and a rejector simultaneously using P 

and N samples based on the ₀-₁-c loss with a rejection cost, 

c [₈]. The proposed method trains a classifier and a rejector 

based on the ₀-₁-c-d loss using P, N, and A samples, where 

d is the misclassification penalty for A samples. Then, in the 

test phase, we use the trained classifier to assign P or N 

labels to the test samples. Through experiments using an in-

house cell culture dataset, we demonstrate that the proposed 

method can improve the test classification accuracy by using 

A samples in the training phase.

2  Formulation

　In this section, we formulate our target problem, named 

classification with ambiguous data (CAD), and propose a 

new method for solving CAD.

2.1.	Preliminary
　We consider three class labels, namely, P, A, and N: 

y ∈ = −{ }0 1 0 1, , . We assume that we are assigned a set of P, 

A, and N samples x yi i
i

N
,( ){ } =1 drawn independently from a 

probability distribution with density p x y0 ,( ) defined on 

X Y× 0 . Let h : →   denote a discriminant function, with 

which a class label is predicted to be P or N (not predicted 

to be A) for a test input point, x, as ˆ .y h x= ( )( )sign  Our goal 

is to learn a discriminant function that accurately classifies 

the test samples (not in the A class). Our key question in 

this scenario is whether we can utilize A training data to 

improve the classification accuracy of the discriminant func-

tion.

　Hence, we develop a new method based on classification 

with a reject option (CRO) [₈]. We first review the CRO 

method before deriving the new method.

2.2.	Classification	with	Reject	Option	using	Support	Vec-
tor	Machine	(CRO-SVM)

　Cortes et. al. [₈] introduced a rejection function, r : , →   

in addition to the discriminant function, to identify regions 

with a high risk for misclassification. When the rejection func-

tion yields a positive value, the corresponding sample is clas-

sified into the P or N class by using classifier h; otherwise, the 

sample is rejected and not classified. When a sample is 

rejected, a rejection cost, c, is incurred, which trades off the 

risk of misclassification. To realize this idea, the ₀-₁-c loss is 

introduced:

　　L h r x y cyh x r x r x01 0 0 01 1 1c , , , ,( ) = +( )≤ ( )> ( )≤  (₁)

where ₁A is the indicator function that yields ₁ if statement A 

is true and ₀ otherwise. When c = ₀, all samples are rejected 

because the loss function does not incur any cost. By con-

trast, when c ≥ ₀.₅, no samples are rejected because the 

expectation of the ₀-₁ loss, 1 0yh x( )≤ , is less than ₀.₅; thus, the 

₀-₁-c loss is reduced to the ₀-₁ loss. Therefore, we only 

consider c such that ₀ < c < ₀.₅.
　Based on the ₀-₁-c loss, the problem is expressed as

　　 h r R h r
h r

∗ ∗

( )
( ) = ( ), , ,

,
argmin

　　 R h r L h r x yp x y, , , , ,,( ) = ( ) ( ) 0 01c  
(₂)

where h∗ and r∗ denote the optimal discriminant function 

and rejection function, respectively, and p x y0 ,( ) denotes the 

expectation over p x y0 , ,( )  In practice, because the true den-

sity, p x y0 , ,( )  is unknown, we typically use the empirical dis-
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tribution to approximate the expectation:

　　
R h

N
L h r x y

i

N

i i ( ) = ( )
=
∑1

1

01c , , , .
 

(₃)

　Because of the discrete nature of the ₀-₁-c loss, its direct 

optimization is computationally intractable. To avoid discon-

tinuity, the following surrogate loss, known as the max-hinge 

(MH) loss, is introduced:

　　 L h r x yMH , , ,( ) =

　　
max , , ,1

2
1 0+ ( ) − ( )( ) − ( )( )





α βr x yh x c r x
 (₄)

where α, β > ₀ are the hyperparameters used to control the 

shape of the surrogate loss. The surrogate loss is an exten-

sion of the hinge loss, which is employed in a support vector 

machine (SVM) [₁₀].

　Further, introducing L₂ regularization, basis functions 

φ φ1 x xN( ) … ( ), , , and slack variables ξ ξ ξ= …( )1, , N


 with 

 

being the transpose yields the following quadratic program:
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where w w wN= …( )1, ,

 are the coefficients of the discrimi-

nant function; u u uN= …( )1, ,
 are the coefficients of the 

rejection function; λ λ, ′ > 0 are the L₂ regularization param-

eters; hi and ri  denote the values of the discriminant function 

and rejection function at sample point xi  expressed as 
h w xi j j ij

N= ( )=∑ φ1  and r u xi j j ij
N= ( )=∑ φ1 , respectively. The 

resulting discriminant and rejection functions are expressed 

as h x w w xj jj
N; ( ) = ( )=∑ φ1  and r x u u xj jj

N; , ( ) = ( )=∑ φ1  respec-

tively.

　We refer to this method as CRO-SVM.

2.3.	Proposed	Method:	Classification	with	A	Data	using	
SVM	(CAD-SVM)

　To manage A training data in the SVM formulation, we 

extend the ₀-₁-c loss to the ₀-₁-c-d loss, as Eq. (₆):

　　
L h r x y c dy yh x r x r x y r x01 1 0 0 0 01 1 1 1 1 12cd , , ,( ) = +( ) += ( )≤ ( )> ( )≤ = ( )>00.

L h r x y c dy yh x r x r x y r x01 1 0 0 0 01 1 1 1 1 12cd , , ,( ) = +( ) += ( )≤ ( )> ( )≤ = ( )>00.
 (₆)

Tables ₂ and ₃ present comparisons of the behaviors of the 

₀-₁-c and ₀-₁-c-d losses, respectively. For the P and N sam-

ples, the ₀-₁-c-d loss behaves the same as the ₀-₁-c loss. In 

contrast, for the A samples, the ₀-₁-c-d loss incurs penalty d 

when they are classified as the P or N class. Therefore, A 

samples tend to be classified into the A class if we employ 

the ₀-₁-c-d loss. Unlike the CRO formulation, CAD utilizes A 

samples to learn a rejector explicitly.

　This discussion may mislead us as if we are just solving a 

three-class problem involving P, N, and A classes. However, 

we do not classify the test samples into the A class, but only 

into the P and N classes. To solve the CAD problem, we 

utilize a binary discriminant function, h, and a rejection func-

tion, r, as in the CRO formulation reviewed earlier. We train 

h and r based on the ₀-₁-c-d loss, and we use only h in the 

test phase to classify the test samples into P and N classes. 

Owing to the interplay between h and r in the ₀-₁-c-d loss, we 

can utilize A samples to train h through r.

　Similar to the ₀-₁-c loss, we consider the following convex 

upper bound of the ₀-₁-c-d loss, named max-hinge-ambigu-

ous (MHA) loss, as a surrogate to avoid its discrete nature:

Table 2　0-1-c loss function.

Judgment
(h, r)

Label y

P
h > ₀
r > ₀

R
r ≤ ₀

N
h ≤ ₀
r > ₀

P: y = ₁ 0 c 1

N: y = -₁ 1 c 0

Table 3　0-1-c-d loss function.

Judgment
(h, r)

Label y

P
h > ₀
r > ₀

R
r ≤ ₀

N
h ≤ ₀
r > ₀

P: y = ₁ 0 c 1

A: y = ₀ d 0 d

N: y = -₁ 1 c 0

L h r x y L h r x y d r x

y

y y01 1 0

2

1 1 1 02cd MH, , , , , , max ,

max

( ) ≤ ( ) + + ( )( )
=

= = β

11
2

1 0 1 1 02+ ( ) − ( )( ) − ( )( )





+ −( ) + ( )( )α β βr x yh x c r x y d r x, , max ,(( )
≤ + ( ) − ( )( ) − ( )( )





+ −( ) +y r x yh x c r x y d2 21
2

1 0 1 1max , , max
α β η ββr x

L h r x y

( )( )( )
≡ ( )

,

, , , ,

0

MHA

(₇)
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where η ≥1 is a hyperparameter that controls the shape of 

the surrogate loss (see Fig. ₁ for the visualization).

　Next, similar to CRO-SVM, we have the following qua-

dratic program:

　　 w u w u
Nw u i

N

i� � �, ,
, ,

ξ
λ λ ξ

ξ
( ) = + +





′
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∑argmin
2 2
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　　 for , , .i N= …1  

(₈)

This formula expresses our proposed method, CAD-SVM.

　To select hyperparameters α β η, , ,( )  we can apply the fol-

lowing theorem (its proof is available in [₁₁]):

Theorem ₁ For each x ∈ , let

　　
h r

L h r x y
h r

p y x

01 01

010

cd cd

| cdargmin

∗ ∗

( )
( )

( )
= ( ) 

,

, , , ,
,



 

(₉)

and

　　 h r

L h r x y
h r

p y x

MHA MHA

| MHAargmin

∗ ∗

( )
( )

( )
= ( ) 

,

, , , .
,

 0

 

(₁₀)

Then, for

　　α β η∗ ∗ ∗= −( ) = +
+

=2 1 2 1 2
2

1 2
c c

c
, , ,  (₁₁)

the signs of h rMHA MHA
∗ ∗( ),  match those of h r01 01cd cd

∗ ∗( ), .

　In the next section, we demonstrate that this method is 

feasible. It is noteworthy that Eq. (₁₁) does not include d.

3  Numerical Experiments

　In this section, we report the experimental results 

obtained using an in-house dataset from a cell culture pro-

cess. A detailed performance evaluation and a comparison 

with baseline methods on other datasets have been reported 

in [₁₁].

3.1.	Dataset
　For real-world applications, we prepared an in-house cell-

culture dataset. This dataset contains ₁₂₄ fields of view 

(FOVs). For each FOV, images were acquired three times at 

T = ₉₉, ₂₇₉, and ₄₅₉ h. All images for each FOV were ana-

lyzed using an image processing software, CL-Quant [₁₂], 

and converted to eight morphological features, such as the 

average brightness and average area of cells. Based on the 

final image for each FOV (T = ₄₅₉ h), each FOV was anno-

tated by experts. If the cells in the image appeared healthy/

damaged, the image was labeled as P/N. Otherwise, the 

experts assign A labels to samples that cannot be confidently 

classified as healthy or damaged. The numbers of samples 

for the P, N, and A classes were ₄₁, ₅₉, and ₂₄, respectively. 

Our goal was to predict the final state of each FOV (anno-

tated by the experts in this simulation) using morphological 

features obtained from each time point of the culturing pro-

cess. In total, we trained and evaluated three types of datas-

ets (Datasets ₁, ₂, and ₃), corresponding to the time point of 

the input images, T. For Datasets ₁ and ₂, the images from 

which we extracted the input features and those from which 

we annotated the output labels were different; this is illus-

trated in Fig. ₂.

Fig. 2 Schematic image of datasets. We created three types of 
datasets and evaluated corresponding models.

3.2.	Experimental	Settings
　Using the aforementioned datasets, we compared the clas-

sification performance of the SVM, SVM-RL (random label), 

LapSVM [₁₃], two-step SVM, CRO-SVM, CRO-SVM-RL, and 

CAD-SVM.

　For each method, ₁₅₀₀ test runs were performed by 

changing the training and test datasets, which were ran-

domly selected from the original dataset. The ratio of the 

Fig. 1　0-1-c-d loss, L01cd, and its surrogate loss, LMHA.
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training and test datasets was ₄:₁. For each test run, five-fold 

cross-validation was performed to determine the relevant 

parameters. For validation and in the test phase, only P and 

N samples were applied to the discriminant function; hence, 

we were able to evaluate the binary classification accuracy.

　We determined ₁₀ hyperparameters λ λ σ σ τ α β η, , , , , , , , ,′ ′( )c d , 

where σ  is the width of the Gaussian radial basis function in 

the basis function φ
σi

i
x

x x( ) = −
−









exp
2

22
, ′σ  is the hyperpa-

rameter of the weight matrix, W, of the graph Laplacian 

expressed as W
x x

ij
i j= −
−







′

exp
2

22σ  (only in the LapSVM), 

and τ  is the coefficient of the graph Laplacian regularization 

(only in the LapSVM). The hyperparameters α β η, ,( ) were 

determined by using Eq. (₁₁), and other hyperparameters 

were selected via five-fold cross-validation (see [₁₁] for 

details). The experimental procedure applied for each data-

set and method is summarized in Algorithm ₁.

Algorithm 1　Experimental procedure for each dataset and method.

3.3.	Results
　Table ₄ summarizes the test accuracy of each method. 

The CAD-SVM showed statistically significant improvements 

over the other methods, particularly in the earlier stages of 

the culturing process. In the earlier stages, the input data 

contained few or inaccurate information; therefore, utilizing 

A samples would be beneficial. However, because the input 

data contained almost complete information during the final 

state, the information of A samples need not be utilized. If 

the information of A samples is intrinsically meaningless, 

then the SVM would be a better solution as it utilizes the 

hinge loss directly based on the ₀-₁ loss (i.e., the binary 

classification accuracy). Overall, the CAD-SVM is a promis-

ing method for utilizing A samples.

4  Conclusion

　In this study, we aimed to reduce labeling cost and 

improve classification accuracy by allowing labelers to pro-

vide A labels for difficult samples. We extended a classifica-

tion method with a reject option and proposed a novel clas-

sification method, named CAD-SVM, which uses the ₀-₁-c-d 

loss. We derived a surrogate loss for the ₀-₁-c-d loss, thereby 

allowing us to convert the optimization problem into a con-

vex quadratic program. We conducted numerical experi-

ments and demonstrated that A labels can be effectively 

used to improve the classification accuracy.

　Although our proposed method was based on the SVM, it 

would be more useful if it is applicable to other models, par-

ticularly to deep neural networks. In future studies, we will 

conduct a theoretical analysis of the proposed method in 

terms of the statistical consistency and convergence rate. 

Extending the proposed loss function to semi-supervised, 

imperfect labeling, or multiclass problems is also a promis-

ing direction for future research.
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